题目链接:http://poj.org/problem?id=2386

Description

Due to recent rains, water has pooled in various places in Farmer John's field, which is represented by a rectangle of N x M (1 <= N <= 100; 1 <= M <= 100) squares. Each square contains either water ('W') or dry land ('.'). Farmer John would like to figure out how many ponds have formed in his field. A pond is a connected set of squares with water in them, where a square is considered adjacent to all eight of its neighbors.

Given a diagram of Farmer John's field, determine how many ponds he has.

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..N+1: M characters per line representing one row of Farmer John's field. Each character is either 'W' or '.'. The characters do not have spaces between them.

Output

* Line 1: The number of ponds in Farmer John's field.

Sample Input

10 12
W........WW.
.WWW.....WWW
....WW...WW.
.........WW.
.........W..
..W......W..
.W.W.....WW.
W.W.W.....W.
.W.W......W.
..W.......W.

Sample Output

3

Hint

OUTPUT DETAILS:

There are three ponds: one in the upper left, one in the lower left,and one along the right side.

题意:有一个大小为N*M的园子,雨后起了水。八连通的积水都被认为是连接在一起的。请求出园子里总共有多少水洼?(八连通指的是下图中相对W的*部分)
***
*W*
***
解题思路:从任意的W开始,不停把邻接的部分用'.'代替。1次dfs后与初始的这个W连接的所有W就都被替换成了'.',因此知道图中不在出现'W'为止,总共进行dfs的次数就是最后的答案了,8个方向对应8种状态转移,每个格子作为dfs的参数之多被调用一次,所以复杂度为O(8*n*m)=O(n*m)。
附上代码:
 #include<iostream>
#include<cstdio>
using namespace std;
char map[][];
int n,m;
int dir[][]={{-,-},{-,},{-,},{,-},{,},{,-},{,},{,}};
//现在位置为(x,y)
void dfs(int x,int y)
{
//将现在所在位置替换为.
map[x][y]='.';
//循环遍历移动的8个方向
for(int i=;i<;i++)
{
int dx=x+dir[i][];
int dy=y+dir[i][];
//判断(dx,dy)内是否又水
if(dx>=&&dx<n&&dy>=&&dy<m&&map[dx][dy]=='W') dfs(dx,dy);
} }
int main()
{
cin>>n>>m;
int res=;
getchar(); //吸收回车符
for(int i=;i<n;i++){
for(int j=;j<m;j++){
scanf("%c",&map[i][j]);
}
getchar();// 将回车符读掉
}
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
//从有水的地方开始dfs
if(map[i][j]=='W')
{
dfs(i,j);
res++;
}
}
}
cout<<res<<endl;
return ;
}
 

poj2386(简单的dfs/bfs)的更多相关文章

  1. POJ 2243 简单搜索 (DFS BFS A*)

    题目大意:国际象棋给你一个起点和一个终点,按骑士的走法,从起点到终点的最少移动多少次. 求最少明显用bfs,下面给出三种搜索算法程序: // BFS #include<cstdio> #i ...

  2. 浅谈DFS,BFS,IDFS,A*等算法

    搜索是编程的基础,是必须掌握的技能.--王主任 搜索分为盲目搜索和启发搜索 下面列举OI常用的盲目搜索: 1.dijkstra 2.SPFA 3.bfs 4.dfs 5.双向bfs 6.迭代加深搜索( ...

  3. DFS/BFS+思维 HDOJ 5325 Crazy Bobo

    题目传送门 /* 题意:给一个树,节点上有权值,问最多能找出多少个点满足在树上是连通的并且按照权值排序后相邻的点 在树上的路径权值都小于这两个点 DFS/BFS+思维:按照权值的大小,从小的到大的连有 ...

  4. 【DFS/BFS】NYOJ-58-最少步数(迷宫最短路径问题)

    [题目链接:NYOJ-58] 经典的搜索问题,想必这题用广搜的会比较多,所以我首先使的也是广搜,但其实深搜同样也是可以的. 不考虑剪枝的话,两种方法实践消耗相同,但是深搜相比广搜内存低一点. 我想,因 ...

  5. 暴力求解——UVA 572(简单的dfs)

    Description The GeoSurvComp geologic survey company is responsible for detecting underground oil dep ...

  6. ID(dfs+bfs)-hdu-4127-Flood-it!

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4127 题目意思: 给n*n的方格,每个格子有一种颜色(0~5),每次可以选择一种颜色,使得和左上角相 ...

  7. [LeetCode] 130. Surrounded Regions_Medium tag: DFS/BFS

    Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A reg ...

  8. POJ 3256 (简单的DFS)

    //题意是 K N, M; //有K个牛 N个牧场,M条路 ,有向的  //把K个牛放到任意的n个不同牧场中,问所有牛都可以到达的牧场数的总和  //这是一道简单的DFS题 //k 100 //n 1 ...

  9. HDU 4771 (DFS+BFS)

    Problem Description Harry Potter has some precious. For example, his invisible robe, his wand and hi ...

随机推荐

  1. 第一章:模型层model layer -- Django从入门到精通系列教程

    该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. 题外话: Django的教程写到这里,就进入 ...

  2. 在python中使用正则表达式(一)

    在python中通过内置的re库来使用正则表达式,它提供了所有正则表达式的功能. 一.写在前面:关于转义的问题 正则表达式中用“\”表示转义,而python中也用“\”表示转义,当遇到特殊字符需要转义 ...

  3. 微服务监控zipkin+asp.net core

    0.目录 整体架构目录:ASP.NET Core分布式项目实战-目录 监控目录:微服务监控zipkin.skywalking以及日志ELK监控系列 一.zipkin介绍 zipkin是一种分布式跟踪系 ...

  4. Web应用实例:音频可视化

    准备 语言:TypeScript 工具:Visual Studio Code 演示:Audio Visualiazer 小明告诉我,他希望打开一个网页,立即听到他喜欢的音乐,如果有视觉特效就更棒了. ...

  5. MySQL主主同步配置

    1. MySQL主主配置过程 在上一篇实现了主从同步的基础上,进行主主同步的配置. 这里用node19(主),node20(从)做修改,使得node19和node20变为主主同步配置模式 修改配置文件 ...

  6. 从源码的角度看 React JS 中批量更新 State 的策略(上)

    在之前的文章「深入理解 React JS 中的 setState」与 「从源码的角度再看 React JS 中的 setState」 中,我们分别看到了 React JS 中 setState 的异步 ...

  7. centos7下安装php+memcached简单记录

    1)centos7下安装php 需要再添加一个yum源来安装php-fpm,可以使用webtatic(这个yum源对国内网络来说恐怕有些慢,当然你也可以选择其它的yum源) [root@nextclo ...

  8. ecna2017-Sheba’s Amoebas

    很简单的深搜的一道题,由于这道题要找环的个数,并且认为相连当一个点的8个方向种中有一个方向和这个点相连. 这个题做法无非就是暴力每个点,然后满足条件的深搜即可. 感觉我自己的代码写的很无趣,大佬的代码 ...

  9. 《移山之道》Reading Task

    老师布置的阅读任务虽然是附加的作业,但是对我来说是个很好的学习机会.软件工程主要是对工程的开发进行学习,毕竟在学校老师教了那么多的知识,我们课下做了那么多的练习并没有提高我们做一个工程的能力.一个项目 ...

  10. 微信开发-charles抓包

    在微信开发过程中有一块不能使用开发者工具进行调试,需要查看请求的返回,故使用了charles抓包工具. 环境配置 1.http://www.charlesproxy.com/getssl/ 下载cha ...