[luogu P3369]【模板】普通平衡树(Treap/SBT)
[luogu P3369]【模板】普通平衡树(Treap/SBT)
题目描述
您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:
插入x数
删除x数(若有多个相同的数,因只删除一个)
查询x数的排名(排名定义为比当前数小的数的个数+1。若有多个相同的数,因输出最小的排名)
查询排名为x的数
求x的前驱(前驱定义为小于x,且最大的数)
- 求x的后继(后继定义为大于x,且最小的数)
输入输出格式
输入格式:
第一行为n,表示操作的个数,下面n行每行有两个数opt和x,opt表示操作的序号( 1 \leq opt \leq 61≤opt≤6 )
输出格式:
对于操作3,4,5,6每行输出一个数,表示对应答案
输入输出样例
10 1 106465 4 1 1 317721 1 460929 1 644985 1 84185 1 89851 6 81968 1 492737 5 493598
106465 84185 492737
说明
时空限制:1000ms,128M
1.n的数据范围: n \leq 100000n≤100000
2.每个数的数据范围: [-{10}^7, {10}^7][−107,107]
来源:Tyvj1728 原名:普通平衡树
在此鸣谢
用一下午的时间打了一发treap(第一次打),感觉还挺好,实现起来没有其他平衡树高。。
然后。。主要是操作方便,旋转容易(主要依赖于树堆性质和随机期望)。。
不说了,直接贴板子。。
code:
再来一发链表指针版的(据说写大数据结构链表很常用)——
code:
%:pragma GCC optimize()
#include<bits/stdc++.h>
using namespace std;
int ans;
class tnode{
private:
];
public:
tnode() {ch[]=ch[]=;}
inline void newnode(tnode* &cur,int x) {
cur=]=cur->ch[]=,cur->v=x,cur->s=cur->c=,cur->k=rand();
}
inline void update(tnode* cur) {
cur->s=cur->c;
]!=) cur->s+=cur->ch[]->s;
]!=) cur->s+=cur->ch[]->s;
}
inline void rotate(tnode* &cur,int dir) {
tnode *tmp=cur->ch[dir^]->ch[dir];
]->ch[dir]==) cur->ch[dir^]->ch[dir]=new tnode;
cur->ch[dir^]->ch[dir]=cur;
cur=cur->ch[dir^];
cur->ch[dir]->ch[dir^]=tmp;
update(cur->ch[dir]);
update(cur);
}
inline void insert(tnode* &cur,int x) {
if (cur==NULL) {newnode(cur,x); return;}
if (cur->v==x) {cur->c++; cur->s++; return;}
bool p=cur->v<x;
insert(cur->ch[p],x);
);
else update(cur);
}
inline void remove(tnode* &cur,int x) {
if (!cur) return;
if (cur->v==x) {
) {cur->c--; cur->s--; return;}
]&&!cur->ch[]) {cur=; return;}
]||!cur->ch[]) {
cur=cur->ch[]?cur->ch[]:cur->ch[]; return;
}
]->k<cur->ch[]->k;
rotate(cur,p);
remove(cur->ch[p],x);
update(cur);
return;
}
bool p=cur->v<x;
remove(cur->ch[p],x);
update(cur);
}
inline int x_rank(tnode* cur,int x) {
;
;
]!=) s=cur->ch[]->s;
;
],x);
],x);
}
inline int rank_x(tnode* cur,int x) {
;
;
]!=) s=cur->ch[]->s;
&&x<=s+cur->c) return cur->v;
) ],x);
],x-s-cur->c);
}
inline void x_pre(tnode* cur,int x) {
if (!cur) return;
],x);
],x);
}
inline void x_suc(tnode* cur,int x) {
if (!cur) return;
],x);
],x);
}
}t,*root;
inline int read() {
,f=; char ch=getchar();
:,ch=getchar();
+ch-',ch=getchar();
return x*f;
}
int main() {
srand();
for (int Q=read(),o,x; Q; --Q) {
o=read(),x=read();
switch (o) {
: t.insert(root,x); break;
: t.remove(root,x); break;
: printf("%d\n",t.x_rank(root,x)); break;
: printf("%d\n",t.rank_x(root,x)); break;
: t.x_pre(root,x); printf("%d\n",ans); break;
: t.x_suc(root,x); printf("%d\n",ans); break;
}
}
;
}
upd 2017/11/18:
学了一下splay,写了一下,神tm好难写啊。。。
题解过段时间补吧。
code:
#pragma GCC optimize(2)
#include <cstdio>
namespace OJ{
void Online_Judge() {
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
}
} using namespace OJ;
namespace fastIO {
#define gec(c) getchar(c)
#define puc(c) putchar(c)
char ch;
inline int read() {
,f=; ch=gec();
') {
if (ch=='-') f=-f;
ch=gec();
}
') {
x=(x<<)+(x<<)+ch-';
ch=gec();
}
return x*f;
}
];
template <class T> inline void write(T x) {
) {
puc('); return;
}
) {
x=-x,puc('-');
}
; x; x/=) w[++cnt]=x%;
);
}
inline void newline() {
puc('\n');
}
} using namespace fastIO;
#define Splay node
class Splay {
private:
int s,t,v;
node* c[];
public:
node () {
s=t=;
c[]=c[]=c[]=;
}
node* newnode (int v) ;
bool dir (node* x) ;
void upd (node* x) ;
void rot (node* x) ;
void splay (node* x,node* a) ;
void find (int v) ;
void insert (node* &x,int v) ;
void erase (int v) ;
int rank (int v) ;
int kth (node* x,int v) ;
int pre (int v) ;
int suc (int v) ;
} t,*r,*ori,*g;
node* Splay::newnode (int v) {
node* ret=new node();
ret->v=v;
return ret;
}
bool Splay::dir (node* x) {
]->c[]) ;
]->c[]==x;
}
void Splay::upd (node* x) {
x->s=x->t;
]) x->s+=x->c[]->s;
]) x->s+=x->c[]->s;
}
void Splay::rot (node* x) {
];
]) y->c[]->c[dir(y)]=x;
x->c[]=y->c[];
y->c[p]=x->c[p^];
]) x->c[p^]->c[]=y;
x->c[p^]=y;
y->c[]=x;
upd(y),upd(x);
}
void Splay::splay (node* x,node* o) {
]==o) return;
]!=o; ) {
]->c[]==o) {
rot(x);
if (!o) r=x;
return;
}
])) rot(x),rot(x);
]),rot(x);
}
if (!o) r=x;
}
void Splay::find (int v) {
for (g=r; g->v!=v; g=g->c[v>g->v]) ;
splay(g,);
}
void Splay::insert (node* &x,int v) {
if (!x) {
x=g=newnode(v);
return;
}
if (v==x->v) {
++x->s,++x->t,g=x;
return;
}
insert(x->c[v>x->v],v);
x->c[v>x->v]->c[]=x;
upd(x);
}
void Splay::erase (int v) {
find(v);
) {
--r->s,--r->t;
return;
}
]||!r->c[]) {
]) r=r->c[],r->c[]=; else
]) r=r->c[],r->c[]=;
;
return;
}
]; g->c[]; g=g->c[]) ;
splay(g,r);
g->c[]=,g->c[]=r->c[];
]) g->c[]->c[]=g;
r=g,upd(r);
}
int Splay::pre (int v) {
insert(r,v);
splay(g,);
]; g->c[]; g=g->c[]) ;
int ret=g->v;
erase(v);
return ret;
}
int Splay::suc (int v) {
insert(r,v);
splay(g,);
]; g->c[]; g=g->c[]) ;
int ret=g->v;
erase(v);
return ret;
}
int Splay::rank (int v) {
find(v);
splay(g,);
]?r->c[]->s:;
;
}
int Splay::kth (node* x,int v) {
;
]?:x->c[]->s;
if (v>s&&v<=s+x->t) return x->v; else
],v);
],v-s-x->t);
}
int Q;
int main() {
Online_Judge();
r=,Q=read();
; q<=Q; ++q) {
int o=read(),x=read();
switch (o) {
:
t.insert(r,x),t.splay(g,);
break;
:
t.erase(x);
break;
:
write(t.rank(x)),newline();
break;
:
write(t.kth(r,x)),newline();
break;
:
write(t.pre(x)),newline();
break;
:
write(t.suc(x)),newline();
break;
}
}
;
}
[luogu P3369]【模板】普通平衡树(Treap/SBT)的更多相关文章
- luoguP3369[模板]普通平衡树(Treap/SBT) 题解
链接一下题目:luoguP3369[模板]普通平衡树(Treap/SBT) 平衡树解析 #include<iostream> #include<cstdlib> #includ ...
- 【模板】平衡树——Treap和Splay
二叉搜索树($BST$):一棵带权二叉树,满足左子树的权值均小于根节点的权值,右子树的权值均大于根节点的权值.且左右子树也分别是二叉搜索树.(如下) $BST$的作用:维护一个有序数列,支持插入$x$ ...
- 数组splay ------ luogu P3369 【模板】普通平衡树(Treap/SBT)
二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) #include <cstdio> #define Max 100005 #define Inline _ ...
- 替罪羊树 ------ luogu P3369 【模板】普通平衡树(Treap/SBT)
二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) 闲的没事,把各种平衡树都写写 比较比较... 下面是替罪羊树 #include <cstdio> #inc ...
- 红黑树 ------ luogu P3369 【模板】普通平衡树(Treap/SBT)
二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) 近几天闲来无事...就把各种平衡树都写了一下... 下面是红黑树(Red Black Tree) 喜闻乐见拿到了luo ...
- 洛谷P3369 【模板】普通平衡树(Treap/SBT)
洛谷P3369 [模板]普通平衡树(Treap/SBT) 平衡树,一种其妙的数据结构 题目传送门 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入x数 删除 ...
- AC日记——【模板】普通平衡树(Treap/SBT) 洛谷 P3369
[模板]普通平衡树(Treap/SBT) 思路: 劳资敲了一个多星期: 劳资终于a了: 劳资一直不a是因为一个小错误: 劳资最后看的模板: 劳资现在很愤怒: 劳资不想谈思路!!! 来,上代码: #in ...
- P3369 【模板】普通平衡树 Treap
P3369 [模板]普通平衡树(Treap/SBT) 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入x数 删除x数(若有多个相同的数,因只删除一个) 查询 ...
- 算法模板——平衡树Treap 2
实现功能:同平衡树Treap 1(BZOJ3224 / tyvj1728) 这次的模板有了不少的改进,显然更加美观了,几乎每个部分都有了不少简化,尤其是删除部分,这个参照了hzwer神犇的写法,在此鸣 ...
随机推荐
- 2、jeecg 笔记之 t:dictSelect 或 t:dgCol 自定义字典
1.需求 先说一下需求场景吧,我们知道 jeecg 中提供了下拉,其中包含两种使用场景: 一种是直接通过 t:dictSelect 使用,再就是 t:dgCol 用于表头的列表工具条标签: 总之就是 ...
- php – Laravel 5查询关系导致“调用成员函数addEagerConstraints()on null”错误( 转载)
php – Laravel 5查询关系导致“调用成员函数addEagerConstraints()on null”错误 我一直在尝试创建一个简单的用户管理系统,但在查询关系时不断遇到障碍.例如,我 ...
- 游戏服务器之Java热更新
对于运行良好的游戏来说,停服一分就会损失很多收益.因为有些小bug就停服就划不来了.在使用Java开游戏服务器时,JVM给我们提供了一些接口,可以简单做一些热更新.修复一些小Bug而不用重启服务. J ...
- OpenStack-Neutron-安全组
neutron中目前安全组的实现是使用iptables来实现的 创建安全组 创建安全组的时候默认有两条“出”规则(ipv4和ipv6) “default”安全组不仅有“出”规则,还有“入”规则.默认有 ...
- rsync 守护进程备份报错
[root@nfs01 backup]# rsync -avz /backup rsync_backup@172.16.1.41::backupPassword: @ERROR: auth fail ...
- Maven Web Project设置Webcontent路径
1,新建maven-archetype-webapp 2,右键项目-->Properties-->选中Project Facets中的Runtimes标签,然后Java版本改为1.8,Dy ...
- 扩容 swap 分区
扩容 swap 分区 题:添加一个 swap 分区在您的系统中添加一个大小为 512 MiB 的 swap 分区.当您的系统启动时,swap 分区应 该可以自动挂载.不要移除或者修改其他已经存在于您的 ...
- centos7救援模式--rescue模式
前序 经典问题:系统无法进入,如grub损坏或某个配置文件改错 操作 1 按方向键到Boot,选到Hard Driver,按减号,使其下移,最终让CD-ROM Drive到第一行,并按F10保存 2 ...
- GIT操纵
简易的命令行入门教程: Git 全局设置: git config --global user.name "XXX" git config --global user.email & ...
- Learning-MySQL【5】:数据的操作管理
一.插入数据 1.为表的所有字段插入数据 通常情况下,插入的新纪录要包含表的所有字段 INSERT 语句有两种方式可以同时为表的所有字段插入数据,第一种方式是不指定具体的字段名,第二种方式是列出表的所 ...