Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)
题意:
一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率
解析:
很容易想到 dp[i] = p * dp[i-1] + (1 - p) * dp[i];
然而。。。t,但这个式子明显可以用矩阵快速幂加个氮气一下加速一下。。。
把所有的点输入之后 sort一下,那么就能把这条路分成很多段 每一段以地雷为分界线
1 - x[0] x[0]+1 - x[1] x[1]+1 - x[2] `````````
然后求出安全通过每一段的概率 乘一下就好了

呐 公式是这个 让 a = p b = (1 - p) 就好啦
代码是我改了一下bin神的 为什么要改。。。我没大懂大佬们写的多一次方啥意思。。。然后 就讨论了一下范围计算
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std; struct Matrix
{
double mat[][];
};
Matrix mul(Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
ret.mat[i][j]=;
for(int k=;k<;k++)
ret.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return ret;
}
Matrix pow_M(Matrix a,int n)
{
Matrix ret;
memset(ret.mat,,sizeof(ret.mat));
for(int i=;i<;i++)ret.mat[i][i]=;
Matrix temp=a;
while(n)
{
if(n&)ret=mul(ret,temp);
temp=mul(temp,temp);
n>>=;
}
return ret;
} int x[];
int main()
{
int n;
double p;
while(cin >> n >> p)
{
for(int i=;i<n;i++)
scanf("%d",&x[i]);
sort(x,x+n);
if(x[] == )
{
puts("0.0000000");
continue;
}
double ans=;
Matrix tt;
tt.mat[][]=p;
tt.mat[][]=-p;
tt.mat[][]=;
tt.mat[][]=;
Matrix temp;
if(x[] > )
{
temp=pow_M(tt,x[]-);
ans*=(-(temp.mat[][] * p + temp.mat[][]));
}
else if(x[] == )
ans *= ( - p);
for(int i=;i<n;i++)
{
if(x[i]==x[i-])continue;
if(x[i]-x[i-] > )
{
temp=pow_M(tt,x[i]-x[i-]-);
ans *= (-(temp.mat[][] * p + temp.mat[][]));
}
else if(x[i]-x[i-] == )
ans *= ( - p);
else if(x[i] - x[i-] == )
ans = ;
}
printf("%.7f\n", ans);
}
return ;
}
Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)的更多相关文章
- poj 3744 概率dp+矩阵快速幂
题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
- POJ 3744 Scout YYF I 概率dp+矩阵快速幂
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...
- poj4474 Scout YYF I(概率dp+矩阵快速幂)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4100 Accepted: 1051 Descr ...
- poj3744 (概率DP+矩阵快速幂)
http://poj.org/problem?id=3744 题意:在一条铺满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,10000000 ...
- poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)
F - Scout YYF I Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ3744 Scout YYF I 概率DP+矩阵快速幂
http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...
- POJ 3744 Scout YYF I (概率dp+矩阵快速幂)
题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...
- bnuoj 34985 Elegant String DP+矩阵快速幂
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...
- poj 3070 && nyoj 148 矩阵快速幂
poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.n ...
随机推荐
- .NET Core 3.0 跟踪
Preview1: https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-3-preview-1-and-ope ...
- VMware Ubuntu蓝屏问题解决
解决方法: 问题分析启动 Ubuntu 可以进入登录界面,说明系统是可以运行起来的.没有发生大块的核心数据损坏,linux 系统一般都可以修复,一定要淡定.于是开始放狗(google)搜索.“VMwa ...
- UWP简单示例(二):快速开始你的3D编程
准备 IDE:Visual Studio 开源库:GitHub.SharpDx 入门示例:SharpDX_D3D12HelloWorld 为什么选择 SharpDx? SharpDx 库与 UWP 兼 ...
- vue-router 注意事项
1.vue-router 两种模式 (1)mode:hash,hash模式背后的原理是onhashchange事件,可以在window对象上监听这个事件.vue默认为hash模式 window.onh ...
- CSS 字体(font)实例
CSS 字体(font)实例CSS 字体属性定义文本的字体系列.大小.加粗.风格(如斜体)和变形(如小型大写字母).CSS 字体系列在 CSS 中,有两种不同类型的字体系列名称: 通用字体系列 - 拥 ...
- Personal Reading Assignment 2 -读推荐文章有感以及项目开发目前总结
在经过个人作业和结对作业的磨练和现在正在进行的团队作业的考验中,我对自己软件开发的一点得失有了些许感悟,同时读了老师推荐的文章后,自己也是有了一些感受. 首先在“No Silver Bullet”一文 ...
- java 计算器实验
1.计算器实验报告 2.https://github.com/xujinxia/text/tree/master 3.实验截图 7+8 清除 六.总结 通过本次实验让我对JFrame类.JPanel类 ...
- 软件工程项目之摄影App(第二次冲刺)
第二次冲刺阶段做出了登录,还有首页.基本界面也成型了. 登录验证码是用了mob的验证码skd.
- 分布式版本控制系统Git的安装与使用(作业2)
(本次作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103) 分布式版本控制系统Git的安装与使用 一.安装Git b ...
- 使用composer遇到的问题及解决方法
可以尝试利用composer下载Yii框架,编辑composer.json文件: { "require":{ "yiisoft/yii2":"~2.0 ...