【BZOJ3309】DZY Loves Math(莫比乌斯反演)
【BZOJ3309】DZY Loves Math(莫比乌斯反演)
题面
求
\]
其中,\(f(x)\)表示\(x\)分解质因数之后,最高的幂次
题解
完全不会莫比乌斯反演了。
先来推式子
\]
\]
设\(F(x)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=x]\)
\(G(x)=\sum_{x|d}f(d)=\sum_{i=1}^n\sum_{j=1}^m[x|gcd(i,j)]\)
所以\(G(x)=[\frac{n}{x}][\frac{m}{x}]\)
所以原式可以变为
又有\(F(x)=\sum_{x|d}\mu(\frac{d}{x})G(d)\)
所以\(F(1)=\sum_{d=1}^n\mu(d)G(d)\)
所以所求变为
\]
\]
老套路了,令\(T=id\)
\]
后面这个玩意怎么算呢??
迷茫啊。。。。
考虑枚举的每一个\(T=p1^{a1}*p2^{a2}...pn^{an}\)
因为\(\mu\)要非零才有贡献,所以\(\frac{T}{d}\)的每一个质因数最多取\(1\),因此一共有\(2^n\)个对应的\(d\)
假设确定了选择某个质因数\(px^{ax-1}\),并且它是最高幂了
那么所有比它低的幂次都可以随意选或者不选,
一共是\(2^{?-1}\)个,不难证明此时\(f(d)\)的值一样,\(\mu\)的值恰好一一对应为\(-1,1\),此时的和一定为\(0\)
这样的前提是存在比他低的次幂,也就意味着所有的幂次不全相等。
假设全部相等的时候?
也就是\(T=(p1p2p3..pn)^a\)
\(d=(p1p2..pn)^{a-1}\)时,\(f(d)=a-1\)
其他情况下\(f(d)=a\)
先假设所有情况下\(f(d)=a\)
显然最终的和也是\(0\)
但是有一种情况下为\(a-1\),因此要对于上面那种情况额外把\(1\)减掉
因此贡献是\(-1*\mu(p1p2p3..pn)=(-1)^{(n+1)}\)
这样就可以算出后面那一坨东西的值了。
至于怎么线性筛?
额外记录每个数出去最小质因子后的数\(lst[i]\)
以及最小质因子的幂次
这样就可以通过\(lst[i]\)计算出结果了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 10000000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool zs[MAX+1];
int pri[MAX+1],tot,g[MAX+1],lst[MAX+1],fp[MAX+1];
void pre()
{
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,lst[i]=g[i]=fp[i]=1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
int x=i*pri[j];
zs[x]=true;
if(i%pri[j]==0)
{
lst[x]=lst[i];
fp[x]=fp[i]+1;
if(lst[x]==1)g[x]=1;
else g[x]=(fp[lst[x]]==fp[x]?-g[lst[x]]:0);
break;
}
lst[x]=i;fp[x]=1;g[x]=(fp[i]==1?-g[i]:0);
}
}
for(int i=1;i<=MAX;++i)g[i]+=g[i-1];
}
int main()
{
pre();
int T=read();
while(T--)
{
int a=read(),b=read();
if(a>b)swap(a,b);
ll ans=0;
for(int i=1,j;i<=a;i=j+1)
{
j=min(a/(a/i),b/(b/i));
ans+=1ll*(a/i)*(b/i)*(g[j]-g[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}
【BZOJ3309】DZY Loves Math(莫比乌斯反演)的更多相关文章
- [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)
$\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1303 Solved: 819[Submit][Status][Dis ...
- 【BZOJ3309】DZY Loves Math - 莫比乌斯反演
题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...
- 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...
- BZOJ 3309 DZY Loves Math ——莫比乌斯反演
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
- BZOJ3309 DZY Loves Maths 莫比乌斯反演、线性筛
传送门 推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^Mf(gcd(i,j)) & = ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
随机推荐
- 微软官方的Excel android 移动版的折腾
微软官方的Excel android 移动版,有重大bug.害我折腾了一天多时间.最终确认是Excel自身的问题. 现象描述:手机上新建或是保存excel后.放到电脑上,不能打开.提示”Excel在B ...
- 微信小程序 wx.getUserInfo 解密 C# 代码 - 转
public static string DecodeUserInfo(string raw, string signature,string encryptedData, string iv) { ...
- Ionic buid android下的此工程不是一个android项目问题
今天编译Ionic项目的时候报如下错误,甚是费解,之前一直都是好的 首先去检查了,相关JavaHome的环境变量,确定是好的,java -version 命令没有问题. 经查阅网上的解决方法,思路大都 ...
- CF 799B T-shirt buying
一道超级水的练习STL的题目 题目大意:有\(n\)件T恤,每件T恤都分别有价格(每件衣服的价格不重复).前面的颜色.背部的颜色三种属性.接下来有\(m\)个人每个人都有一种喜欢的颜色,他们按先后顺序 ...
- 51nod 抽卡大赛
抽卡大赛 链接 分析: $O(n^4)$的做法比较好想,枚举第i个人选第j个,然后背包一下,求出有k个比他大的概率. 优化: 第i个人,选择一张卡片,第j个人选的卡片大于第i个人的概率是$p_j$,那 ...
- .NET Standard库引用导致的FileNotFoundException探究
微软近几年推出.NET Standard,将.NET Framework,.NET Core,Xamarin等目标平台的api进行标准化和统一化,极大地方便了类库编写人员的工作.简单的说,类库编写人员 ...
- [UWP 自定义控件]了解模板化控件(2.1):理解ContentControl
UWP的UI主要由布局容器和内容控件(ContentControl)组成.布局容器是指Grid.StackPanel等继承自Panel,可以拥有多个子元素的类.与此相对,ContentControl则 ...
- 程序员从技术开发到项目管理PM--思维转变
对以往所做项目的经验做下总结,作为项目经理首先要对项目负责,思维要做下转变,要从项目全局角度考虑问题: 从个人成就到团队成就. 无论是做管理还是做技术,成就导向意识是优秀员工的基本素质.只有具 ...
- 一文让你熟练掌握Linux的ncat(nc)命令
一文让你熟练掌握Linux的ncat(nc)命令 ncat 或者说 nc 是一款功能类似 cat 的工具,但是是用于网络的.它是一款拥有多种功能的 CLI 工具,可以用来在网络上读.写以及重定向数据. ...
- Ionic 入门与实战之第三章:Ionic 项目结构以及路由配置
原文发表于我的技术博客 本文是「Ionic 入门与实战」系列连载的第三章,主要对 Ionic 的项目结构作了介绍,并讲解了Ionic 中的路由概念以及相关配置. 原文发表于我的技术博客 1. Ioni ...