传送门:https://www.luogu.org/problemnew/show/P2522

题目描述

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

分析

特殊情况和POI2007 ZAP-Queries相同。
接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理。
这道题目有毒,int和long long乱开会T掉,要注意。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
}
#define N 50005
int prime[N], mu[N], sum[N];
bool vis[N];
int a, b, c, d, k, cnt;
void get_mu(int MAXN) {
    mu[1] = 1;
    for (int i = 2; i <= MAXN; i ++) {
        if (!vis[i]) {
            prime[++ cnt] = i;
            mu[i] = -1;
        }
        for (int j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
            vis[i * prime[j]] = 1;
            if (i % prime[j] == 0) break;
            else mu[i * prime[j]] = -mu[i];
        }
    }
    for (int i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mu[i];
}
ll solve(int a, int b) {
    ll res = 0;
    for (int l = 1, r; l <= min(a, b); l = r + 1) {
        r = min(a / (a / l) , b / (b / l));
        res += 1ll * (a / (l * k)) * (b / (l * k)) * (sum[r] - sum[l - 1]);
    }
    return res;
}
int main() {
    int cas;
    read(cas);
    get_mu(50000);
    while (cas --) {
        read(a); read(b); read(c); read(d); read(k);
        printf("%lld\n", solve(b, d) - solve(b, c - 1) - solve(a - 1, d) + solve(a - 1, c - 1));
    }
    return 0;
}

[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  3. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  4. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  10. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. VB6 加密解密字符串

    Public Function EnCodeStr(ByVal password As String) As String Dim il_bit, il_x, il_y, il_z, il_len, ...

  2. python爬虫xpath的语法

    有朋友问我正则,,okey,其实我的正则也不好,但是python下xpath是相对较简单的 简单了解一下xpath: XPath 是一门在 XML 文档中查找信息的语言.XPath 可用来在 XML ...

  3. 自己动手写把”锁”---LockSupport深入浅出

    本篇是<自己动手写把"锁">系列技术铺垫的最后一个知识点.本篇主要讲解LockSupport工具类,它用来实现线程的挂起和唤醒. LockSupport是Java6引入 ...

  4. CSS 列表实例

    CSS 列表属性允许你放置.改变列表项标志,或者将图像作为列表项标志.CSS 列表属性(list)属性 描述list-style 简写属性.用于把所有用于列表的属性设置于一个声明中.list-styl ...

  5. linux下监控某个目录是否被更改

    需求:对一个目录(比如/data/test)进行监控,当这个目录下文件或子目录出现变动(如修改.创建.删除.更名等操作)时,就发送邮件!针对上面的需求,编写shell脚本如下: [root@cento ...

  6. wordcount程序

    wordcount程序算是相比于前几次作业来说比较难得一个作业了.进行了一次真的自己编写程序.WC程序实现了对txt文件中的数据的计数,算出程序中有多少单词.字符数以及行数.这次的程序编程是采用的C语 ...

  7. python实现线性规划

    python工具包scipy linprog 函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bo ...

  8. 【Beta版本发布】爬虫队长装备全面更新!

    一.Beta阶段目标回顾 1.为了解决Alpha阶段线程异常泛滥的问题,我们需要一个线程池. 2.为了爬取得到的文件正确可用,我们需要一个异常清理器. 3.为了不间断爬取,管理员不必频繁运行程序点,我 ...

  9. 软件工程项目之摄影App(总结)

    软件工程项目之摄影App 心得体会: dyh:这次的项目很难做,本来想在里面添加动画效果的,但是找了很多例子都没看明白,能力还是不足够把,还有一个就是数据库在安卓课程里面刚刚涉及到,所以也还没能做出数 ...

  10. [2017BUAA软工]个人项目

    软工个人项目 一.Github项目地址 https://github.com/Lydia-yang/2017BUAA-SoftwareEngineering 二.解题思路 在刚开始拿到题目的时候,关于 ...