传送门:https://www.luogu.org/problemnew/show/P2522

题目描述

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

分析

特殊情况和POI2007 ZAP-Queries相同。
接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理。
这道题目有毒,int和long long乱开会T掉,要注意。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
}
#define N 50005
int prime[N], mu[N], sum[N];
bool vis[N];
int a, b, c, d, k, cnt;
void get_mu(int MAXN) {
    mu[1] = 1;
    for (int i = 2; i <= MAXN; i ++) {
        if (!vis[i]) {
            prime[++ cnt] = i;
            mu[i] = -1;
        }
        for (int j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
            vis[i * prime[j]] = 1;
            if (i % prime[j] == 0) break;
            else mu[i * prime[j]] = -mu[i];
        }
    }
    for (int i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mu[i];
}
ll solve(int a, int b) {
    ll res = 0;
    for (int l = 1, r; l <= min(a, b); l = r + 1) {
        r = min(a / (a / l) , b / (b / l));
        res += 1ll * (a / (l * k)) * (b / (l * k)) * (sum[r] - sum[l - 1]);
    }
    return res;
}
int main() {
    int cas;
    read(cas);
    get_mu(50000);
    while (cas --) {
        read(a); read(b); read(c); read(d); read(k);
        printf("%lld\n", solve(b, d) - solve(b, c - 1) - solve(a - 1, d) + solve(a - 1, c - 1));
    }
    return 0;
}

[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  3. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  4. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  10. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. [Spark][Hive]Hive的命令行客户端启动:

    [Spark][Hive]Hive的命令行客户端启动: [training@localhost Desktop]$ chkconfig | grep hive hive-metastore 0:off ...

  2. 使用Pyspark进行特征工程时的那些坑

    以脚本spark_clean_online_action.py.数据集new_sxf_time_count_1781115582.csv为例: 集群节点包括212.216.217.218.需要注意的是 ...

  3. Nancy异步用法

    个人笔记,记录Nancy异步用法 基类,所有请求都将首先执行该类,并执行Before事件 namespace CxyAdvert.Base { public class BaseNancyModel ...

  4. IntelliJ IDEA下自动生成Hibernate映射文件以及实体类

    来自:https://blog.csdn.net/chenyunqiang/article/details/81026823 1.构建项目并添加项目结构配置以及配置初始参数 1.1.如图将基本的架子搭 ...

  5. Notepad++中的颜色属性设置大全

    Indent guideline style  缩进参考线的颜色Brace highlight style 鼠标指针在框架左右时框架的颜色(如css中{}   js中的())Bad brace col ...

  6. Mvc_后端通用验证

    namespace Web.Mvc.Extensions { #region 验证基类 /// <summary> /// 通用验证基类 /// </summary> publ ...

  7. swift 各种学习

    swift使用cocoapods引用oc第三方库 1. 创建桥接文件 2. 在主工程的 build Settings 搜索 bridge   设置 Objective-C Bridging Headi ...

  8. 个人博客作业Week2 是否需要有代码规范

    问题:是否需要有代码规范 对于是否需要有代码规范,请考虑下列论点并反驳/支持: 1.这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 2.我是个艺术家,手艺人,我有 ...

  9. win10下安装GLPK

    认识GLPK GLPK是一个解决线性规划问题的工具.是GNU计划下一个用于解线性规 划(Linear Programming)的工具包.它可以方便的描述线性规划问题,并给出相应解. 因此在linux系 ...

  10. Distances to Zero CodeForces - 803B (二分)

    题目链接:https://vjudge.net/problem/CodeForces-803B#author=0 题意: 给你一个数组,其中至少包括一个0,求每一个元素距离最近一个0的距离是多少. 样 ...