MT【191】阿波罗尼乌斯圆
已知$f(x)=2\sqrt{(\cos x+\frac{1}{2})^2+\sin^2 x}-\sqrt{\cos^2 x+(\sin x-\frac{1}{2})^2}$,若$m\ge f(x)$恒成立,求$m$的范围_______.

提示:
设 $A'(-\dfrac{1}{2},0),B(0,\dfrac{1}{2}),A(-2,0),P(x,y)$为单位圆上的点,
则$f(x)=2|PA'|-|PB|=|PA|-|PB|\le |AB|=\dfrac{\sqrt{17}}{2}$故$m\ge\dfrac{\sqrt{17}}{2}$
值此而立之年,附一首:
满江红·写怀
怒发冲冠,凭栏处、潇潇雨歇。抬望眼,仰天长啸,壮怀激烈。三十功名尘与土,八千里路云和月。莫等闲,白了少年头,空悲切!(栏 通:阑)
靖康耻,犹未雪。臣子恨,何时灭!驾长车,踏破贺兰山缺。壮志饥餐胡虏肉,笑谈渴饮匈奴血。待从头、收拾旧山河,朝天阙。
MT【191】阿波罗尼乌斯圆的更多相关文章
- MT【107】立体几何中用阿波罗尼乌斯圆的一道题
分析:利用内外圆知识知道,B,C两点到 AD 的距离$\le4$. 利用体积公式$V=\frac{1}{3}S_{截面}|AD|\le2\sqrt{15}$
- MT【253】仿射和蒙日圆
如图,设点$M(x_0,y_0)$是椭圆$C:\dfrac{x^2}{2}+y^2=1$上一点,从原点$O$向圆$M:(x-x_0)^2+(y-y_0)^2=\dfrac{2}{3}$作两条切线分别与 ...
- 普林斯顿数学指南(第三卷) (Timothy Gowers 著)
第V部分 定理与问题 V.1 ABC猜想 V.2 阿蒂亚-辛格指标定理 V.3 巴拿赫-塔尔斯基悖论 V.4 Birch-Swinnerton-Dyer 猜想 V.5 卡尔松定理 V.6 中心极限定理 ...
- 如何阅读一本书——分析阅读Pre
如何阅读一本书--分析阅读Pre 前情介绍 作者: 莫提默.艾德勒 查尔斯.范多伦 初版:1940年,一出版就是全美畅销书榜首一年多.钢铁侠Elon.Musk学过. 需要注意的句子: 成功的阅读牵涉到 ...
- MT【290】内外圆求三角最值
求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值. 提示:$\sqrt{\dfrac{5}{4}-\sin x} ...
- 天气预报API(二):全球城市、景点代码列表(“旧编码”)
说明 2016-12-10 补充 (后来)偶然发现中国天气网已经有城市ID列表的网页...还发现城市编码有两种,暂且称中国天气网这些编码为旧标准"旧编码"的特征是 9个字符长度; ...
- 世界城市 XML
下载地址:http://www.qlcoder.com/uploads/dd01140921/147988679320159.xml <Location> <CountryRegio ...
- python爬虫爬取全球机场信息
--2013年10月10日23:54:43 今天需要获取机场信息,发现一个网站有数据,用爬虫趴下来了所有数据: 目标网址:http://www.feeyo.com/airport_code.asp?p ...
- JS城市data
CityData = { "中国": { "北京": ["东城区", "西城区", "崇文区", & ...
随机推荐
- 十行代码--用python写一个USB病毒 (知乎 DeepWeaver)
昨天在上厕所的时候突发奇想,当你把usb插进去的时候,能不能自动执行usb上的程序.查了一下,发现只有windows上可以,具体的大家也可以搜索(搜索关键词usb autorun)到.但是,如果我想, ...
- 7、存储类 & 作用域 & 生命周期 & 链接属性
概念解析 存储类 存储类就是存储类型,也就是描述C语言变量在何种地方存储. 内存有多种管理方法:栈.堆.数据段.bss段..text段······一个变量的存储类属性就是描述这个变量存储在何种内存段中 ...
- 字符串阵列String[]转换为整型阵列Int[]
原始数据: string input = "3,7,2,8,1,9,1,34,67,78,22"; 要处理为: " }; 最终处理为: , , , , , , , , , ...
- STM32 M3内核的位带操作原理及步骤
STM32 M3内核的位带操作原理及步骤 一.位带操作有什么用?什么是位带操作 位带操作的作用:可以实现对某一GPIO口寄存器(或SRAM内存中)的某一bit位直接写0或1,达到控制GPIO口输出(或 ...
- JQuery_自带的动画效果
1.方法: show:显示选中元素. hide:隐藏选中元素. toggle:显示或隐藏选中元素. fadeIn:将选中元素的不透明度逐步提升到100%. fadeOut:将选中元素的不透明度逐步降为 ...
- Ionic 2.0 相关资料
原文发表于我的技术博客 本文汇总了学习 Ionic 2 的相关资料,也算是一个 Ionic Awesome 列表,供大家参考,有需要分享的可以留言. 原文发表于我的技术博客 1. 文档 1.1 Ion ...
- MySQL高可用架构-MHA环境部署记录
一.MHA介绍 MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton(现就职于Facebook公司) ...
- 个人博客作业-Week7
团队任务中个人感想 我们团队选的题目是爬虫, 采用用AVA平台开发了, 我原来JAVA语言不熟悉了, PM考虑这部分之后分配任务这部分感觉很多谢 团队当中的PM很清楚每个组员的力量, 所以PM跟每个组 ...
- linux及安全第三周总结——跟踪分析LINUX内核的启动过程
linux内核目录结构 arch目录包括了所有和体系结构相关的核心代码.它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录.PC机一 ...
- 2017-2018-2 1723《程序设计与数据结构》实验四 & 实验五 & 课程总结 总结
作业地址 实验四作业:https://edu.cnblogs.com/campus/besti/CS-IMIS-1723/homework/1943 提交情况如图: 实验五作业:https://edu ...