#-*- coding: utf-8 -*-
#逻辑回归 自动建模
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
#参数初始化
filename = '../data/bankloan.xls'
data = pd.read_excel(filename)
x = data.iloc[:,:8].as_matrix()#使用pandas读取文件 就可以不用管label column标签
y = data.iloc[:,8].as_matrix() rlr = RLR() #建立随机逻辑回归模型,进行特征选择和变量筛选
rlr.fit(x, y) #训练模型
egeList=rlr.get_support() #获取筛选后的特征
egeList=np.append(egeList,False)#往numpy数组中 添加一个False元素 使用np.append(array,ele)方法
print("rlr.get_support():")
print(egeList)
print(u'随机逻辑回归模型特征选择结束!!!')
print(u'有效特征为:%s' % ','.join(data.columns[egeList]))
x = data[data.columns[egeList]].as_matrix() #筛选好特征值 lr = LR() #建立逻辑回归模型
lr.fit(x, y) #用筛选后的特征进行训练
print(u'逻辑回归训练模型结束!!!')
print(u'模型的平均正确率:%s' % lr.score(x, y)) #给出模型的平均正确率,本例为81.4% D:\Download\python3\python3.exe "D:\Program Files\JetBrains\PyCharm 2017.3.3\helpers\pydev\pydev_run_in_console.py" 56033 56034 "E:/A正在学习/python data dig/chapter5/demo/code/5-1_logistic_regression.py"
Running E:/A正在学习/python data dig/chapter5/demo/code/5-1_logistic_regression.py
import sys; print('Python %s on %s' % (sys.version, sys.platform))
sys.path.extend(['E:\\A正在学习\\python data dig', 'E:/A正在学习/python data dig/chapter5/demo/code'])
C:\Users\Snow\AppData\Roaming\Python\Python35\site-packages\sklearn\utils\deprecation.py:58: DeprecationWarning: Class RandomizedLogisticRegression is deprecated; The class RandomizedLogisticRegression is deprecated in 0.19 and will be removed in 0.21.
warnings.warn(msg, category=DeprecationWarning)
rlr.get_support():
[False False True True False True True False False]
随机逻辑回归模型特征选择结束!!!
有效特征为:工龄,地址,负债率,信用卡负债
逻辑回归训练模型结束!!!
模型的平均正确率:0.8142857142857143
PyDev console: starting.
Python 3.5.4 (v3.5.4:3f56838, Aug 8 2017, 02:17:05) [MSC v.1900 64 bit (AMD64)] on win32

python逻辑回归 自动建模的更多相关文章

  1. Spark LogisticRegression 逻辑回归之建模

    导入包 import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.s ...

  2. 逻辑回归原理,推导,sklearn应用

    目录 逻辑回归原理,推导,及sklearn中的使用 1 从线性回归过渡到逻辑回归 2 逻辑回归的损失函数 2.1 逻辑回归损失函数的推导 2.2 梯度下降法 2.3 正则化 3 用逻辑回归进行多分类 ...

  3. pytorch(06)autograd与逻辑回归

    autograd与逻辑回归 自动求导系统中两个常用的方法: torch.autograd.backward and torch.autograd.grad 演示理解一阶导数.二阶导数的求导过程 理解自 ...

  4. 逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  5. (数据科学学习手札24)逻辑回归分类器原理详解&Python与R实现

    一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们 ...

  6. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  7. 用Python开始机器学习(7:逻辑回归分类) --好!!

    from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到 ...

  8. Python实现LR(逻辑回归)

    Python实现LR(逻辑回归) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end o ...

  9. Python实践之(七)逻辑回归(Logistic Regression)

    机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Pyth ...

随机推荐

  1. 树莓派设置NTP同步

    pi@raspberrypi:~ $ sudo timedatectl set-ntp true--------------启用NTPpi@raspberrypi:~ $ date           ...

  2. java-深克隆和浅克隆

    文章参考 https://www.cnblogs.com/acode/p/6306887.html 一.前提 1.使用clone()方法的类,必须实现Cloneable接口, 否则调用clone()方 ...

  3. mysql order by 排序的问题

    参考博客http://blog.csdn.net/hollboy/article/details/13296601 mysql order by 的排序在今天时候遇到了问题 情景是:将排序的字段设置成 ...

  4. vue将表格导出为excel

    vue将表格导出为excel 一:在项目中需要安装2个依赖项,如下命令: npm install --save file-saver xlsx 二:在vue文件中如下使用即可: <templat ...

  5. 17-(基础入门篇)GPRS(Air202)串口

    https://www.cnblogs.com/yangfengwu/p/9968716.html 现在看一下官方给的demo 其实只要有两个就好说了 module(...,package.seeal ...

  6. python wsgi 简介

    wsgi全称是"Web Server Gateway Interfacfe",web服务器网关接口,wsgi在python2.5中加入,是web服务器和web应用的标准接口,任何实 ...

  7. CF1060D Social Circle 排序

    题目传送门:http://codeforces.com/problemset/problem/1060/D 题意:有$N$个人,你要让他们坐成若干个圆环.他们每个人需要坐一把椅子,左手边至少要有$l_ ...

  8. POI Sax 事件驱动解析Excel2003文件

    POI事件驱动解析Excel文件 package com.boguan.bte.util.excel; import java.io.FileInputStream; import java.io.I ...

  9. sql储存过程in(多个参数)

    一.用sql函数 首先要创建一个截取字符串的函数,新建一个查询,把下面代码复制进去执行. 函数SqlitIn的第一个参数是储存过程要in的字符串,第二个参数是分隔符 CREATE function S ...

  10. RHEL7VIM编辑器

    本文介绍Vim编辑器的使用 vi和vim的区别 它们都是多模式编辑器 不同的是vim是vi的升级版本 它不仅兼容vi的所有指令而且还有一些新的特性在里面 vim的这些优势主要体现在以下几个方面 多级撤 ...