第1章 初识Go语言

  1.1 语言特性

  1.2 安装和设置

  1.3 工程构造

    1.3.1 工作区

    1.3.2 GOPATH

    1.3.3 源码文件

package main

import (
    "fmt"
    "runtime"
)

:::"C"}
var info string

func init() {
    fmt.Printf("Init :: Map: %v\n",m)

    info = fmt.Sprintf("OS: %s,Arch: %s",runtime.GOOS,runtime.GOARCH)
}

func main() {
    fmt.Printf("main :: %s",info)
}

pkg_init

    1.3.4 代码包

  1.4 标准命令简述

  1.5 问候程序

package main

import (
    "bufio"
    "os"
    "fmt"
)

func main() {
    inputReader := bufio.NewReader(os.Stdin)
    fmt.Println("Please input your name:")
    input,err := inputReader.ReadString('\n')
    if err != nil {
        fmt.Printf("Found an error : %s\n",err)
    } else {
        input = input[:len(input)-]
        fmt.Printf("Hello,%s!\n",input)
    }
}

hello

  1.6 小结

第2章 语法概述

  2.1 基本构成要素

    2.1.1 标识符

    2.1.2 关键字

    2.1.3 字面量

    2.1.4 操作符

    2.1.5 表达式

  2.2 基本类型

  2.3 高级类型

    2.3.1 数组

    2.3.2 切片

    2.3.3 字典

    2.3.4 函数和方法

    2.3.5 接口

    2.3.6 结构体

  2.4 流程控制

    2.4.1 代码块和作用域

package main

import "fmt"

var v = "1,2,3"

func main() {
    v := [],,}
    if v != nil {

        fmt.Printf("%v\n",v)
    }
}

redeclare

    2.4.2 if语句

    2.4.3 switch语句

    2.4.4 for语句

    2.4.5 defer语句

    2.4.6 panic和recover

  2.5 聊天机器人

package main

import (
    "bufio"
    "os"
    "fmt"
    "strings"
)

func main() {
    inputReader := bufio.NewReader(os.Stdin)
    fmt.Println("Please input your name:")
    input,err := inputReader.ReadString('\n')
    if err != nil {
        fmt.Printf("An error occurred: %s\n",err)
        os.Exit()
    } else {
        name := input[:len(input)-]
        fmt.Printf("Hello, %s! What can I do for you?\n",name)
    }
    for {
        input,err = inputReader.ReadString('\n')
        if err != nil {
            fmt.Printf("An error occurred: %s\n",err)
            continue
        }
        input = input[:len(input)-]
        input = strings.ToLower(input)
        switch input {
        case "":
            continue
        case "nothing","bye":
            fmt.Println("Bye!")
            os.Exit()
        default:
            fmt.Println("Sorry,I didn't catch you.")
        }
    }
}

simple

  2.6 小结

第3章 并发编程综述

  3.1 并发编程基础

    3.1.1 串行程序与并发程序

    3.1.2 并发程序与并行程序

    3.1.3 并发程序与并发系统

    3.1.4 并发程序的不确定性

    3.1.5 并发程序内部的交互

  3.2 多进程编程

    3.2.1 进程

    3.2.2 关于同步

    3.2.3 管道

    3.2.4 信号

    3.2.5 socket

  3.3 多线程编程

    3.3.1 线程

    3.3.2 线程的同步

  3.4 多线程与多进程

  3.5 多核时代的并发编程

  3.6 小结

第4章 Go的并发机制

  4.1 原理探究

    4.1.1 线程实现模型

    4.1.2 调度器

    4.1.3 更多细节

  4.2 goroutine

    4.2.1 go语句与goroutine

package main

func main() {
    go println("Go!Goroutine!")
}

gobase1

package main

import "time"

func main() {
    go println("Go! Goroutine!")
    time.Sleep(time.Millisecond)
}

gobase2

package main

import (
    "fmt"
    "time"
)

func main() {
    name := "Eric"
    go func() {
        fmt.Printf("Hello,%s!\n",name)
    }()
    name = "Harry"
    time.Sleep(time.Millisecond)
}

gobase3

package main

import (
    "fmt"
    "time"
)

func main() {
    names := []string{"Eric","Harry","Robert","Jim","Mark"}
    for _,name := range names {
        go func() {
            fmt.Printf("Hello,%s\n",name)
        }()
    }
    time.Sleep(time.Millisecond)
}

gobase4

package main

import (
    "fmt"
    "time"
)

func main() {
    names := []string{"Eric","Harry","Robert","Jim","Mark"}
    for _,name := range names {
        go func(who string) {
            fmt.Printf("Hello,%s\n",who)
        }(name)
    }
    time.Sleep(time.Millisecond)
}

gobase5

    4.2.2 主goroutine的运作

    4.2.3 runtime包与goroutine

  4.3 channel

    4.3.1 channel的基本概念

package main

import (
    "fmt"
    "time"
)

)

func main() {
    syncChan1 := make(chan )
    syncChan2 := make(chan )

    go func() {
        <-syncChan1
        fmt.Println("Received a sync signal and wait a second... [receiver]")
        time.Sleep(time.Second)
        for {
            if elem,ok := <- strChan;ok {
                fmt.Println("Received:",elem,"[receiver]")
            } else {
                break
            }
        }
        fmt.Println("Stopped. [receiver]")
        syncChan2 <- struct{}{}
    }()
    go func() {
        for _,elem := range []string{"a","b","c","d"} {
            strChan <- elem
            fmt.Println("Sent:",elem,"[sender]")
            if elem == "c" {
                syncChan1 <- struct{}{}
                fmt.Println("Sent a sync signal. [Sender]")
            }
        }
        fmt.Println("Wait 2 seconds... [sender]")
        time.Sleep(time.Second * )
        close(strChan)
        syncChan2 <- struct{}{}
    }()

    <-syncChan2
    <-syncChan2
}

chanbase1

package main

import (
    "fmt"
    "time"
)

)

func main() {
    syncChan := make(chan )
    go func() {
        for {
            if elem,ok := <- mapChan;ok {
                elem["count"]++
            } else {
                break
            }
        }
        fmt.Println("Stopped. [receiver]")
        syncChan <- struct{}{}
    }()
    go func() {
        countMap := make(map[string]int)
        ; i < ; i++ {
            mapChan <- countMap
            time.Sleep(time.Millisecond)
            fmt.Printf("The count map: %v. [sender]\n",countMap)
        }
        close(mapChan)
        syncChan <- struct{}{}
    }()
    <-syncChan
    <-syncChan
}

chanval1

package main

import (
    "fmt"
    "time"
)

type Counter struct {
    count int
}

)

func main() {
    syncChan := make(chan )
    go func() {
        for {
            if elem,ok := <- mapChan;ok {
                counter := elem["count"]
                counter.count++
            } else {
                break
            }
        }
        fmt.Println("Stopped. [receiver]")
        syncChan <- struct{}{}
    }()
    go func() {
        countMap := map[string]Counter {
            "count": Counter{},
        }
        ; i < ; i++ {
            mapChan <- countMap
            time.Sleep(time.Millisecond)
            fmt.Printf("The count map: %v. [sender]\n",countMap)
        }
        close(mapChan)
        syncChan <- struct{}{}
    }()
    <- syncChan
    <- syncChan
}

chanval2

package main

import "fmt"

func main() {
    dataChan := make(chan )
    syncChan1 := make(chan )
    syncChan2 := make(chan )

    go func() {
        <- syncChan1
        for {
            if elem,ok := <- dataChan;ok {
                fmt.Println("Received: %d [receiver]\n",elem)
            } else {
                break
            }
        }
        fmt.Println("Done. [receiver]")
        syncChan2 <- struct{}{}
    }()
    go func() {
        ; i < ; i++ {
            dataChan <- i
            fmt.Printf("Sent: %d [sender]\n",i)
        }
        close(dataChan)
        syncChan1 <- struct{}{}
        fmt.Println("Done. [sender]")
        syncChan2 <- struct{}{}
    }()
    <- syncChan2
    <- syncChan2
}

chanclose

       4.3.2 单向channel

package main

import (
    "fmt"
    "time"
)

)

func main() {
    syncChan1 := make(chan )
    syncChan2 := make(chan )

    go receive(strChan,syncChan1,syncChan2)
    go send(strChan,syncChan1,syncChan2)
    <- syncChan2
    <- syncChan2
}

func send(strChan chan<- string,syncChan1 chan<- struct{},syncChan2 chan<- struct{}) {
    for _,elem := range []string{"a","b","c","d"} {
        strChan <- elem
        fmt.Println("Sent:",elem,"[sender]")
        if elem == "c" {
            syncChan1 <- struct{}{}
            fmt.Println("Sent a sync signal. [sender]")
        }
    }
    fmt.Println("Wait 2 seconds... [sender]")
    time.Sleep(time.Second * )
    close(strChan)
    syncChan2 <- struct{}{}
}

func receive(strChan <-chan string,syncChan1 <-chan struct{},syncChan2 chan<- struct{}) {
    <- syncChan1
    fmt.Println("Received a sync signal and wait a second... [receiver]")
    time.Sleep(time.Second)
    for {
        if elem,ok := <- strChan;ok {
            fmt.Println("Received:",elem,"[receiver]")
        } else {
            break
        }
    }
    fmt.Println("Stopped. [receiver]")
    syncChan2 <- struct{}{}
}

chanbase2

package main

import "fmt"

func main() {
    var ok bool
    ch := make(chan )
    _,ok = interface{}(ch).(<-chan int)
    fmt.Println("chan int => <-chan int:",ok)
    _,ok = interface{}(ch).(chan<- int)
    fmt.Println("chan int => chan<- int:",ok)

    sch := make(chan<- )
    _,ok = interface{}(sch).(chan int)
    fmt.Println("chan<- int => chan int:",ok)

    rch := make(<-chan )
    _,ok = interface{}(rch).(chan int)
    fmt.Println("<-chan int => chan int:",ok)
}

chanconv

    4.3.3 for语句与channel

package main

import (
    "fmt"
    "time"
)

)

func main() {
    syncChan1 := make(chan )
    syncChan2 := make(chan )
    go receive(strChan,syncChan1,syncChan2)
    go send(strChan,syncChan1,syncChan2)
    <-syncChan2
    <-syncChan2
}

func receive(strChan <-chan string,syncChan1 <-chan struct{},syncChan2 chan<- struct{}) {
    <-syncChan1
    fmt.Println("Received a sync signal and wait a second... [receiver]")
    time.Sleep(time.Second)
    for elem := range strChan {
        fmt.Println("Received:",elem,"[receiver]")
    }
    fmt.Println("Stopped. [receiver]")
    syncChan2 <- struct{}{}
}

func send(strChan chan<- string,syncChan1 chan<- struct{},syncChan2 chan<- struct{}) {
    for _,elem := range []string{"a","b","c","d"} {
        strChan <- elem
        fmt.Println("Sent:",elem,"[sender]")
        if elem == "c" {
            syncChan1 <- struct{}{}
            fmt.Println("Sent a sync signal. [sender]")
        }
    }
    fmt.Println("Wait 2 seconds... [sender]")
    time.Sleep(time.Second * )
    close(strChan)
    syncChan2 <- struct{}{}
}

chanbase3

    4.3.4 select语句

package main

import "fmt"

var intChan1 chan int
var intChan2 chan int
var channels = []chan int{intChan1,intChan2}

,,,,}

func main() {
    select {
    ) <- getNumber():
        fmt.Println("1th case is selected.")
    ) <- getNumber():
        fmt.Println("The 2nd case is selected.")
    default:
        fmt.Println("Default")
    }
}

func getNumber(i int) int {
    fmt.Printf("numbers[%d]\n",i)
    return numbers[i]
}

func getChan(i int) chan int {
    fmt.Printf("channel[%d]\n",i)
    return channels[i]
}

selecteval

package main

import "fmt"

func main() {
    chanCap :=
    intChan := make(chan int,chanCap)

    ; i < chanCap; i++ {
        select {
        :
        :
        :
        }
    }

    ; i < chanCap; i++ {
        fmt.Printf("%d\n",<-intChan)
    }
}

selectrandom

package main

import "fmt"

func main() {
    intChan := make(chan )
    ; i < ; i++ {
        intChan <-
    }
    close(intChan)

    syncChan := make(chan )

    go func() {
    Loop:
        for {
            select {
            case e,ok := <-intChan:
                if !ok {
                    fmt.Println("End.")
                    break Loop
                }
                fmt.Printf("Received: %v\n",e)
            }
        }
        syncChan <- struct{}{}
    }()

    <-syncChan
}

selectfor    

    4.3.5 非缓冲的channel

package main

import (
    "time"
    "fmt"
)

func main() {
    sendingInterval := time.Second
    receptionInterval := time.Second *
    intChan := make(chan )
    go func() {
        var ts0,ts1 int64
        ; i <= ; i++ {
            intChan <- i
            ts1 = time.Now().Unix()
             {
                fmt.Println("Sent:",i)
            } else {
                fmt.Printf("Sent: %d [interval: %d s]\n",i,ts1-ts0)
            }
            ts0 = time.Now().Unix()
            time.Sleep(sendingInterval)
        }
        close(intChan)
    }()

    var ts0,ts1 int64
    Loop:
        for {
            select {
            case v,ok := <- intChan:
                if !ok {
                    break Loop
                }
                ts1 = time.Now().Unix()
                 {
                    fmt.Println("Received:",v)
                } else {
                    fmt.Printf("Received: %d [interval: %d s]\n",v,ts1 - ts0)
                }
            }
            ts0 = time.Now().Unix()
            time.Sleep(receptionInterval)
        }
        fmt.Println("End.")
}

chan0cap

    4.3.6 time包与channel

package main

import (
    "time"
    "fmt"
)

func main() {
    timer := time.NewTimer( * time.Second)
    fmt.Printf("Present time: %v.\n",time.Now())
    expirationTime := <- timer.C
    fmt.Printf("Expiration time: %v.\n",expirationTime)
    fmt.Printf("Stop timer: %v.\n",timer.Stop())
}

timerbase

package main

import (
    "fmt"
    "time"
)

func main() {
    intChan := make(chan )
    go func() {
        time.Sleep(time.Second)
        intChan <-
    }()

    select {
    case e := <- intChan:
        fmt.Printf("Received: %v\n",e)
    ).C:
        fmt.Println("Timeout!")
    }
}

chantimeout1

package main

import (
    "time"
    "fmt"
)

func main() {
    intChan := make(chan )
    go func() {
        ; i < ; i++ {
            time.Sleep(time.Second)
            intChan <- i
        }
        close(intChan)
    }()

    timeout := time.Millisecond *
    var timer * time.Timer

    for {
        if timer == nil {
            timer = time.NewTimer(timeout)
        } else {
            timer.Reset(timeout)
        }
        select {
        case e,ok := <- intChan:
            if !ok {
                fmt.Println("End.")
                return
            }
            fmt.Printf("Received: %v\n",e)
        case <- timer.C:
            fmt.Println("Timeout!")
        }
    }
}

chantimeout2

package main

import (
    "time"
    "fmt"
)

func main() {
    intChan := make(chan )
    ticker := time.NewTicker(time.Second)
    go func() {
        for _ = range ticker.C {
            select {
            :
            :
            :
            }
        }
        fmt.Println("End. [sender]")
    }()

    var sum int
    for e := range intChan {
        fmt.Printf("Received: %v\n",e)
        sum += e
         {
            fmt.Printf("Got: %v\n",sum)
            break
        }
    }
    fmt.Println("End. [receiver]")
}

tickercase

  4.4 实战演练:载荷发生器

    4.4.1 参数和结果

    4.4.2 基本构造

    4.4.3 初始化

    4.4.4 启动和停止

    4.4.5 调用器和功能测试

  4.5 小结

第5章 同步

  5.1 锁的使用

    5.1.1 互斥锁

package main

import (
    "sync"
    "fmt"
    "time"
)

func main() {
    var mutex sync.Mutex
    fmt.Println("Lock the lock. (main)")
    mutex.Lock()
    fmt.Println("The lock is locked. (main)")
    ; i <= ; i++ {
        go func(i int) {
            fmt.Printf("Lock the lock. (g%d)\n",i)
            mutex.Lock()
            fmt.Printf("The lock is locked. (g%d)\n",i)
        }(i)
    }
    time.Sleep(time.Second)
    fmt.Println("Unlock the lock. (main)")
    mutex.Unlock()
    fmt.Println("The lock is unlocked. (main)")
    time.Sleep(time.Second)
}

repeatedlylock

package main

import (
    "sync"
    "fmt"
)

func main() {
    defer func() {
        fmt.Println("Try to recover the panic.")
        if p := recover(); p != nil {
            fmt.Printf("Recovered the panic(%#v).\n",p)
        }
    }()

    var mutex sync.Mutex

    fmt.Println("Lock the lock.")
    mutex.Lock()
    fmt.Println("The lock is locked.")

    fmt.Println("Unlock the lock.")
    mutex.Unlock()
    fmt.Println("The lock is unlocked.")

    fmt.Println("Unlock the lock again.")
    mutex.Unlock()
}

repeatedlyunlock

    5.1.2 读写锁

    5.1.3 锁的完整示例

  5.2 条件变量

  5.3 原子操作

    5.3.1 增或减

    5.3.2 比较并交换

    5.3.3 载入

    5.3.4 存储

    5.3.5 交换

    5.3.6 原子值

package main

import (
    "sync/atomic"
    "fmt"
)

func main() {
    var countVal atomic.Value
    countVal.Store([],,,})
    anotherStore(countVal)
    fmt.Printf("The count value: %+v \n",countVal.Load())
}

func anotherStore(countVal atomic.Value) {
    countVal.Store([],,,})
}

copiedvalue

    5.3.7 应用于实际

  5.4 只会执行一次

  5.5 WaitGroup

  5.6 临时对象池

  5.7 实战演练-Concurrent Map

  5.8 小结

第6章 网络爬虫框架设计和实现

  6.1 网络爬虫与框架

  6.2 功能需求和分析

  6.3 总体设计

  6.4 详细设计

    6.4.1 基本数据结构

    6.4.2 接口的设计

  6.5 工具的实现

    6.5.1 缓冲器

    6.5.2 缓冲池

    6.5.3 多重读取器

  6.6 组件的实现

    6.6.1 内部基础接口

    6.6.2 组件注册器

    6.6.3 下载器

    6.6.4 分析器

    6.6.5 条目处理管道

  6.7 调度器的实现

    6.7.1 基本结构

    6.7.2 初始化

    6.7.3 启动

    6.7.4 停止

    6.7.5 其他方法

    6.7.6 总结

  6.8 一个简单的图片爬虫

    6.8.1 概述

    6.8.2 命令参数

    6.8.3 初始化调度器

    6.8.4 监控调度器

    6.8.5 启动调度器

  6.9 扩展和思路

  6.10 本章小结

Go并发编程实战 (郝林 著)的更多相关文章

  1. 《Go并发编程实战》第2版 紧跟Go的1.8版本号

    文章作者:郝林(<Go并发编程实战 (第2版)>作者) 最终来了! 经过出版社的各位编辑.校对.排版伙伴与我的N轮PK和共同努力,<Go并发编程实战>第2版的全部内容最终全然确 ...

  2. Scala 深入浅出实战经典 第66讲:Scala并发编程实战初体验

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  3. 【Java并发编程实战】----- AQS(四):CLH同步队列

    在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形.其主要从两方面进行了改造:节点的结构与节点等待机制.在结构上引入了头 ...

  4. 【Java并发编程实战】----- AQS(三):阻塞、唤醒:LockSupport

    在上篇博客([Java并发编程实战]----- AQS(二):获取锁.释放锁)中提到,当一个线程加入到CLH队列中时,如果不是头节点是需要判断该节点是否需要挂起:在释放锁后,需要唤醒该线程的继任节点 ...

  5. 【Java并发编程实战】----- AQS(二):获取锁、释放锁

    上篇博客稍微介绍了一下AQS,下面我们来关注下AQS的所获取和锁释放. AQS锁获取 AQS包含如下几个方法: acquire(int arg):以独占模式获取对象,忽略中断. acquireInte ...

  6. 【Java并发编程实战】-----“J.U.C”:Exchanger

    前面介绍了三个同步辅助类:CyclicBarrier.Barrier.Phaser,这篇博客介绍最后一个:Exchanger.JDK API是这样介绍的:可以在对中对元素进行配对和交换的线程的同步点. ...

  7. 【Java并发编程实战】-----“J.U.C”:CountDownlatch

    上篇博文([Java并发编程实战]-----"J.U.C":CyclicBarrier)LZ介绍了CyclicBarrier.CyclicBarrier所描述的是"允许一 ...

  8. 【Java并发编程实战】-----“J.U.C”:CyclicBarrier

    在上篇博客([Java并发编程实战]-----"J.U.C":Semaphore)中,LZ介绍了Semaphore,下面LZ介绍CyclicBarrier.在JDK API中是这么 ...

  9. 【Java并发编程实战】-----“J.U.C”:ReentrantReadWriteLock

    ReentrantLock实现了标准的互斥操作,也就是说在某一时刻只有有一个线程持有锁.ReentrantLock采用这种独占的保守锁直接,在一定程度上减低了吞吐量.在这种情况下任何的"读/ ...

随机推荐

  1. Vue:(三)路由

    (一)基础介绍 vue-router用来构建SPA <router-link></router-link>或者this.$router.push({path:' '}) < ...

  2. python 获取文件目录位置

    test.py import os print('***获取当前目录***') print(os.getcwd()) print(os.path.abspath(os.path.dirname(__f ...

  3. Redis学习--key的通用操作、移库操作、订阅与事务、持久化和总结

    key的通用操作 keys pattern: pattern *表示任意一个多个字符 ?表示任意一个字符 del key1 key2 删除多个key exists keyname 查看是否存在 ren ...

  4. 20190316xlVba_设置行高的改进方案

    Public Sub AutoSetRowHeight(ByVal sht As Worksheet, Optional RowsInOnePage As Long) Dim BreakRow As ...

  5. 使用Metasploit渗透攻击windows系统(一)

    攻击机:kaili ip:192.168.80.157 目标机:win7 IP:192.168.80.158 这里用两种方法去创建meterpreter会话: 1)利用kali中的msfvenom生成 ...

  6. 团队作业8——敏捷冲刺(Beta阶段)

    Beta阶段--第1篇 Scrum 冲刺博客(计划) https://www.cnblogs.com/just-let-it-go/p/9061664.html Beta阶段--第2篇 Scrum 冲 ...

  7. 【转】.Net Core中的Api版本控制

    原文链接:API Versioning in .Net Core 作者:Neel Bhatt 简介 Api的版本控制是Api开发中经常遇到的问题, 在大部分中大型项目都需要使用到Api的版本控制 在本 ...

  8. 简单函数template max

    #include <iostream> #include <vector> #include <algorithm> #include <string> ...

  9. 匿名函数lambda及面试题三道

    # 函数名 = lambda 参数 :返回值. 匿名函数只是函数,如果要通过可迭代对象给匿名函数传参,就需要使用 map 或者 filter calc = lambda n:n**n calc(1)c ...

  10. JavaWeb基础-过滤器监听器

    过滤器 1定义:过滤器是一个服务器的组件,他可以截取用户端的请求与响应信息,并对这些信息进行过滤;过滤器可以动态地拦截请求和响应,以变换或使用包含在请求或响应中的信息. 2过滤器的工作原理: 3过滤器 ...