Problem Description
A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the ui-th block to the vi-th block. Your task is to solve the lunch issue. According to the arrangement, there are si competitors in the i-th block. Limited to the size of table, bi bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path.
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i - th path, there is a chance of pi to touch
the wires and affect the whole networks. Moreover, to protect these wires, no more than ci competitors are allowed to walk through the i-th path.
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing.

Input
The first line of input contains an integer t which is the number of test cases. Then t test cases follow.
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and bi (si , bi ≤ 200).
Each of the next M lines contains three integers ui , vi and ci(ci ≤ 100) and a float-point number pi(0 < pi < 1).
It is guaranteed that there is at least one way to let every competitor has lunch.

Output
For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.

Sample Input
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5

Sample Output
0.50

题意

n个点m条边,每个点有s个人,b个食物,每条单向边u,v,c,p,c为一条边最多经过c次,p为路断的概率,第一个人经过一定不会断,第二个人开始每个人有p的概率使得路断

问每个人都有食物并且使得破坏网络概率最小

题解

显然不能直接算路断的概率,要算最大不断概率,再用1-它

可以知道如果有a条边被破坏,那么概率就是(1-p)^a

最小费用流跑得是加法,显然得变成乘法,可以两边取对数log10,这样跑的话是最小不断概率,再同*-1,就可以得到最大了

还有一点第一个人经过不会断,可以单独拿1流量概率为0就行了

注意在SPFA跑的时候会有浮点数的比较,需要加1个eps,不然会TLE

答案就是10^(-最大不断概率)

代码

 #include<bits/stdc++.h>
using namespace std; const int N=1e5+;
const int M=2e5+;
const int INF=0x3f3f3f3f; int FIR[N],FROM[M],TO[M],CAP[M],FLOW[M],NEXT[M],tote;
double COST[M],dist[N];
int pre[N],q[];
bool vis[N];
int n,m,S,T;
void init()
{
tote=;
memset(FIR,-,sizeof(FIR));
}
void addEdge(int u,int v,int cap,double cost)
{
FROM[tote]=u;
TO[tote]=v;
CAP[tote]=cap;
FLOW[tote]=;
COST[tote]=cost;
NEXT[tote]=FIR[u];
FIR[u]=tote++; FROM[tote]=v;
TO[tote]=u;
CAP[tote]=;
FLOW[tote]=;
COST[tote]=-cost;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
bool SPFA(int s, int t)
{
for(int i=;i<=n+;i++)
{
dist[i]=1e9;
vis[i]=;
pre[i]=-;
}
dist[s]=;vis[s]=true;q[]=s;
int head=,tail=;
while(head!=tail)
{
int u=q[++head];vis[u]=false;
for(int v=FIR[u];v!=-;v=NEXT[v])
{
if(dist[TO[v]]>dist[u]+COST[v]+1e-&&CAP[v]>FLOW[v])
{
dist[TO[v]]=dist[u]+COST[v];
pre[TO[v]]=v;
if(!vis[TO[v]])
{
vis[TO[v]] = true;
q[++tail]=TO[v];
}
}
}
}
return pre[t]!=-;//可达返回true
}
void MCMF(int s, int t, double &cost, int &flow)
{
flow=;
cost=;
while(SPFA(s,t))
{
int Min=INF;
for(int v=pre[t];v!=-;v=pre[TO[v^]])
Min=min(Min,CAP[v]-FLOW[v]);
for(int v=pre[t];v!=-;v=pre[TO[v^]])
{
FLOW[v]+=Min;
FLOW[v^]-=Min;
cost+=COST[v]*Min;
}
flow+=Min;
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
S=,T=n+;
for(int i=,s,b;i<=n;i++)
{
scanf("%d%d",&s,&b);
if(s>b)addEdge(S,i,s-b,0.0);
if(s<b)addEdge(i,T,b-s,0.0);
}
double p;
for(int i=,u,v,c;i<m;i++)
{
scanf("%d%d%d%lf",&u,&v,&c,&p);
if(c>)addEdge(u,v,,0.0);
if(c>)addEdge(u,v,c-,-log10(1.0-p));
}
int flow;
double cost;
MCMF(S,T,cost,flow);
printf("%.2f\n",1.0-pow(10.0,-cost));
}
return ;
}

HDU 5988 Coding Contest(最小费用最大流变形)的更多相关文章

  1. HDU 5988.Coding Contest 最小费用最大流

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. HDU5988/nowcoder 207G - Coding Contest - [最小费用最大流]

    题目链接:https://www.nowcoder.com/acm/contest/207/G 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5988 ...

  3. HDU–5988-Coding Contest(最小费用最大流变形)

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  4. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  5. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

  6. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  7. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  9. POJ 2195 & HDU 1533 Going Home(最小费用最大流)

    这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...

随机推荐

  1. 初学版本控制更新Version control

    概述: 在学习计算机软件工程中,修订控制是跟踪和控制源代码更改的任何类型的实践. 对于软件开发人员有时会使用修订控制软件来维护文档和配置文件以及源代码. 当团队设计,开发和部署软件时,通常会将同一软件 ...

  2. PHP面试题学习

    PHP 开发工程师笔试试卷 姓名 :__________ 第一部分为必答题,第二.三部分任选其一回答 一. PHP 开发部分 1.合并两个数组有几种方式,试比较它们的异同. 2.请写一个函数来检查用户 ...

  3. Spring Boot 非常好的学习资料

    from@https://gitee.com/didispace/SpringBoot-Learning Spring Boot 2.0 新特性学习 简介与概览 Spring Boot 2.0 正式发 ...

  4. 虚拟机安装及Oracle安装

    1.安装虚拟机(没难度,傻瓜装机) 新建虚拟机 自定义------下一步------- 稍后安装操作系统------下一步 下一步 下一步至完成 然后启动,就可以启动一个系统咯!!! 可以查一下虚拟机 ...

  5. gcc centos 新版本的安装方法

    因为centos默认安装的gcc是GCC 4.*.* 是不支持 C++11 的,所以有些新的程序或软件要安装就行要升级GCC,否则无法编译通过 一.如下步骤安装不成功(yum install devt ...

  6. 3、PHP中常用的数据库操作函数解析

    mysql_connect  连接数据库 mysql_select_db 选择需要操作的数据库 mysql_query 执行数据库操作语句 mysql_fetch_array 以数组的形式返回每行查询 ...

  7. 涨姿势:Java 分业务、分级别实现自定义日志打印

    自定义日志级别 通常的日志框架都有以下几个级别,从低到高TRACE,DEBUG,INFO,WARN,ERROR,FATAL. 默认情况,假如我们定义日志打印级别INFO,它会把大于等于INFO级别的日 ...

  8. 数据访问安全--数据库遮罩及断词 Data Masking & Tokenization

    现在大数据时代几乎无隐私,各政府部门各公司都要求实名制(动不动手机认证,身份证号码认证),但又无力确保数据安全,称为乱象. 其实在2011年,我们就接触过数据库遮罩断词产品,一个澳大利亚公司产品. 简 ...

  9. Hibernate一对多OnetoMany

    ------------------------Hibernate一对多OnetoMany 要点: 配置在一端. 1.如果是单向关联,即只在一端配置OneToMany,多端不配置ManyToOne.则 ...

  10. git打tag

    亲们支持我的新博客哦==>地址(以后更新会尽量在新博客更新,欢迎大家访问加入我的后宫w) ) ​ 标签分类 ​ git标签分为两种类型:轻量标签和附注标签.轻量标签是指向提交对象的引用,附注标签 ...