Pandas合并数据集之concat、combine_first方法
轴向连接(concat)
Numpy
import numpy as np
import pandas as pd
from pandas import Series
arr = np.arange(12).reshape(3,4)
arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
# axis默认为行,想合并列可以设置axis=1
np.concatenate([arr,arr])
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
pandas对象的轴向连接
# 三个没有重叠的索引合在一起
s1 = Series([0,1],index=['a','b'])
s2 = Series([2,3,4],index=['c','d','e'])
s3 = Series([5,6], index=['f','g'])
# concat对象里面需要接受一个可迭代的对象
pd.concat([s1,s2,s3])
a 0
b 1
c 2
d 3
e 4
f 5
g 6
dtype: int64
# 如果传入axis=1,则多一个轴方向,会变成DataFrame
pd.concat([s1,s2,s3],axis=1)
0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
s4 = pd.concat([s1*5,s3])
s4
a 0
b 5
f 5
g 6
dtype: int64
# 默认合并的还是outer
pd.concat([s1,s4],axis=1)
0 1
a 0.0 0
b 1.0 5
f NaN 5
g NaN 6
# 默认合并的还是outer,如果想得到合并的交集,则指定join = 'inner'
pd.concat([s1,s4],axis=1,join='inner')
0 1
a 0 0
b 1 5
# 指定要合并的索引名,如果没有,则合并为NaN
pd.concat([s1,s4],axis=1,join_axes=[['a','b','c','e']])
0 1
a 0.0 0.0
b 1.0 5.0
c NaN NaN
e NaN NaN
#在合并行索引上创建一个层次化索引,keys参数
pd.concat([s1,s4],keys=['one','two','three'])
one a 0
b 1
two a 0
b 5
f 5
g 6
dtype: int64
pd.concat([s1,s2,s3],axis=1)
0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
#如果沿着axis=1对Series进行合并,则keys就会成为DATAFrame的列名
pd.concat([s1,s2,s3],axis=1,keys=['one','two','three'])
one two three
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
DataFrame的concat操作
df1 = pd.DataFrame(np.arange(6).reshape(3,2),index=['a','b','c'],columns=['one','two'])
df1
one two
a 0 1
b 2 3
c 4 5
df2 = pd.DataFrame(5 + np.arange(4).reshape(2,2),index=['a','c'],columns=['three','four'])
df2
three four
a 5 6
c 7 8
# 合并列
pd.concat([df1,df2],axis=1)
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
# 如果传入的不是列表而是一个字典,则字典的键就是层次化索引列名
pd.concat({'level1':df1,'level2':df2},axis=1)
level1 level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
# names的命名是层次化索引的行标签,upper行对应level1,level2
pd.concat([df1,df2],axis=1,keys=['level1','level2'],names=['upper','lower'])
upper level1 level2
lower one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
df3 = pd.DataFrame(np.random.randn(3,4),columns=['a','b','c','d'])
df4 = pd.DataFrame(np.random.randn(2,3),columns=['b','d','a'])
# 这样的行索引重复的难看要死,可以关闭了,ignore_index=True
pd.concat([df3,df4])
a b c d
0 0.649869 -0.332470 0.918562 -1.781167
1 -0.271012 0.702998 -2.164433 0.185556
2 0.279104 -0.846209 -0.366614 0.444451
0 -0.204010 -0.974424 NaN -2.215621
1 0.504930 0.490877 NaN 0.332790
#ingore_index启用后,行索引就会自增
pd.concat([df3,df4],ignore_index=True)
a b c d
0 0.649869 -0.332470 0.918562 -1.781167
1 -0.271012 0.702998 -2.164433 0.185556
2 0.279104 -0.846209 -0.366614 0.444451
3 -0.204010 -0.974424 NaN -2.215621
4 0.504930 0.490877 NaN 0.332790
合并重叠数据(combine_first)
a = Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index=['f','e','d','c','b','a'])
a
f NaN
e 2.5
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
b = Series(np.arange(len(a),dtype=np.float64),index=['f','e','d','c','b','a'])
b
f 0.0
e 1.0
d 2.0
c 3.0
b 4.0
a 5.0
dtype: float64
# where(条件,真值,假值),这里a数据集有null条件成立,故返回b的值
np.where(pd.isnull(a),b,a)
array([0. , 2.5, 2. , 3.5, 4.5, 5. ])
a[2:]
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
b[:-2]
f 0.0
e 1.0
d 2.0
c 3.0
dtype: float64
# 用a的数据填补b,如果有重复的以b为准
b[:-2].combine_first(a[2:])
a NaN
b 4.5
c 3.0
d 2.0
e 1.0
f 0.0
dtype: float64
# 用b的数据填补a,如果有重复的,以a为准
a[2:].combine_first(b[:-2])
a NaN
b 4.5
c 3.5
d 2.0
e 1.0
f 0.0
dtype: float64
Pandas合并数据集之concat、combine_first方法的更多相关文章
- Pandas合并数据集之merge、join方法
合并数据集 pandas.merge 可根据一个或多个键将不同DataFrame中的行连接起来. pandas.concat 可以沿着一条轴将多个对象堆叠到一起. combine_first merg ...
- Python数据科学手册-Pandas:合并数据集
将不同的数据源进行合并 , 类似数据库 join merge . 工具函数 concat / append pd.concat() 简易合并 合并高维数据 默认按行合并. axis=0 ,试试 axi ...
- pandas合并数据集-【老鱼学pandas】
有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回. 合并 首先准备数据: import pandas as pd imp ...
- pandas(七)数据规整化:清理、转换、合并、重塑之合并数据集
pandas对象中的数据可以通过一些内置的方式进行合并: pandas.merge 可根据一个或多个键将不同的DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象堆叠 ...
- python merge、concat合并数据集
数据规整化:合并.清理.过滤 pandas和python标准库提供了一整套高级.灵活的.高效的核心函数和算法将数据规整化为你想要的形式! 本篇博客主要介绍: 合并数据集:.merge()..conca ...
- Pandas 合并 concat
pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式. 1.axis(合并方向):axis=0 ...
- MySQL把多个字段合并成一条记录的方法
转:http://www.111cn.net/database/mysql/71591.htm MySQL把多个字段合并成一条记录的方法 在mysql中字段合并可以使用很多函数来实现,如可以利用 GR ...
- JS合并两个数组的方法
JS合并两个数组的方法 我们在项目过程中,有时候会遇到需要将两个数组合并成为一个的情况.比如: var a = [1,2,3]; var b = [4,5,6]; 有两个数组a.b,需求是将两个数组合 ...
- python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件)
# python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedial ...
随机推荐
- PTA——完全数
PTA 7-45 找完数 网友“云上明月”的程序: #include<stdio.h> int isPerfect(int num); int main() { ; int maxFact ...
- 从npm 角度理解 mvn 的 pom.xml
从npm 角度理解 mvn 的 pom.xml pom -- project object model. 用于描述项目的配置: 基础说明 依赖 如何构建运行 类似 node.js 的 package. ...
- 剑指offer 1.数组 二维数组中查找
题目描述 在一个二维数组中(每个一维数组的长度相同), 每一行都按照从左到右递增的顺序排序, 每一列都按照从上到下递增的顺序排序. 请完成一个函数, 输入这样的一个二维数组和一个整数,判断数组中是否含 ...
- c++ CreateProcess调用dos命令
// test.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <windows.h> #include &l ...
- Linux之ls
命令功能: ls是list的简写,列出目录下的内容 命令格式: ls [OPTION]... [FILE]... 命令参数: -a,--all 不忽略以“.”开头的隐藏文件 -A, --almo ...
- NodeJs中类定义及类使用
1.首先定义类Point,文件名为point.class.js: // 定义类 class Point { //构造函数 constructor(x, y) { this.x = x;//类中变量 t ...
- Java访问Phoenix连接
两种方法,一种是直接使用jdbc连接,一种是使用spring连接. jdbc连接和访问oracle步骤相同: ///////////// 测试Phoenix连接 /////////////// Str ...
- Let'sencrypt.sh 抛出异常: Response: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:726)>
起因 今天网站的SSL证书过期了,打算重新申请,运行 Let'sencrypt.sh 的时候抛出了这么个异常. 一番搜索,发现居然找不到直接的答案.没有直接的答案就只能通过间接的答案来解决了. 希望我 ...
- Getting started - RN1
0. down yarn https://yarnpkg.com 1. Expo Cli 此环境用于开发或学习之用. (1)install npm install -g expo-cli (2) us ...
- 204. jetcache:在Spring Boot中怎么玩?
[视频&交流平台] àSpringBoot视频:http://t.cn/R3QepWG à SpringCloud视频:http://t.cn/R3QeRZc à Spring Boot源 ...