简介

今天为大家介绍的是scikit-learn。sklearn是一个Python第三方提供的非常强力的机器学习库,它包含了从数据预处理到训练模型的各个方面。在实战使用scikit-learn中可以极大的节省我们编写代码的时间以及减少我们的代码量,使我们有更多的精力去分析数据分布,调整模型和修改超参。(sklearn为包名)

基本概括

sklearn拥有可以用于监督和无监督学习的方法,一般来说监督学习使用的更多。sklearn中的大部分函数可以归为估计器(Estimator)和转化器(Transformer)两类。

估计器(Estimator)其实就是模型,它用于对数据的预测或回归。基本上估计器都会有以下几个方法:

  • fit(x,y) :传入数据以及标签即可训练模型,训练的时间和参数设置,数据集大小以及数据本身的特点有关
  • score(x,y)用于对模型的正确率进行评分(范围0-1)。但由于对在不同的问题下,评判模型优劣的的标准不限于简单的正确率,可能还包括召回率或者是查准率等其他的指标,特别是对于类别失衡的样本,准确率并不能很好的评估模型的优劣,因此在对模型进行评估时,不要轻易的被score的得分蒙蔽。
  • predict(x)用于对数据的预测,它接受输入,并输出预测标签,输出的格式为numpy数组。我们通常使用这个方法返回测试的结果,再将这个结果用于评估模型。

转化器(Transformer)用于对数据的处理,例如标准化、降维以及特征选择等等。同与估计器的使用方法类似:

  • fit(x,y) :该方法接受输入和标签,计算出数据变换的方式。
  • transform(x) :根据已经计算出的变换方式,返回对输入数据x变换后的结果(不改变x)
  • fit_transform(x,y) :该方法在计算出数据变换方式之后对输入x就地转换。

以上仅仅是简单的概括sklearn的函数的一些特点。sklearn绝大部分的函数的基本用法大概如此。但是不同的估计器会有自己不同的属性,例如随机森林会有Feature_importance来对衡量特征的重要性,而逻辑回归有coef_存放回归系数intercept_则存放截距等等。并且对于机器学习来说模型的好坏不仅取决于你选择的是哪种模型,很大程度上与你超参的设置有关。因此使用sklearn的时候一定要去看看官方文档,以便对超参进行调整。

机器学习框架之sklearn简介的更多相关文章

  1. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  2. 机器学习入门之sklearn介绍

    SKlearn简介 scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包.它通过NumPy, SciPy和Matplotlib等python数值计算的库实现 ...

  3. 一个开源的,跨平台的.NET机器学习框架ML.NET

    微软在Build 2018大会上推出的一款面向.NET开发人员的开源,跨平台机器学习框架ML.NET. ML.NET将允许.NET开发人员开发他们自己的模型,并将自定义ML集成到他们的应用程序中,而无 ...

  4. 开源的,跨平台的.NET机器学习框架ML.NET

    微软在Build 2018大会上推出的一款面向.NET开发人员的开源,跨平台机器学习框架ML.NET. ML.NET将允许.NET开发人员开发他们自己的模型,并将自定义ML集成到他们的应用程序中,而无 ...

  5. 【机器学习】多项式回归sklearn实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用sklearn框架实现多项式回归.使用框架更方便,可以少写很多代码. 使用一个简单 ...

  6. 机器学习框架ML.NET学习笔记【8】目标检测(采用YOLO2模型)

    一.概述 本篇文章介绍通过YOLO模型进行目标识别的应用,原始代码来源于:https://github.com/dotnet/machinelearning-samples 实现的功能是输入一张图片, ...

  7. Django框架-目录文件简介

    Rhel6.5 Django1.10 Python3.5 Django框架-目录文件简介 1.介绍Django Django:一个可以使Web开发工作愉快并且高效的Web开发框架. 使用Django, ...

  8. 基于Docker的TensorFlow机器学习框架搭建和实例源码解读

    概述:基于Docker的TensorFlow机器学习框架搭建和实例源码解读,TensorFlow作为最火热的机器学习框架之一,Docker是的容器,可以很好的结合起来,为机器学习或者科研人员提供便捷的 ...

  9. [转] - Weiflow——微博机器学习框架

    Weiflow--微博机器学习框架 本文从开发效率(易用性).可扩展性.执行效率三个方面,介绍了微博机器学习框架Weiflow在微博的应用和最佳实践. 在上期<基于Spark的大规模机器学习在微 ...

随机推荐

  1. Hibernate 再接触 HQL

    Category.java package com.bjsxt.hibernate; import javax.persistence.Entity; import javax.persistence ...

  2. html----input标签

    HTML 5 <input> 标签 定义和用法 <input> 标签规定用户可输入数据的输入字段. 根据不同的 type 属性,输入字段有多种形态.输入字段可以是文本字段.复选 ...

  3. python入门(五):切片列表元祖字典

    1.切片 针对序列,使用切片可以获得我们想要的内容 序列:字符串.列表.元祖 特点:可以使用坐标获取某一个值.坐标是从0开始算 >>> s="0123456789" ...

  4. 20175314 《Java程序设计》第一周学习总结

    20175314 <Java程序设计>第一周学习总结   教材学习内容总结       除了学院统一购买的<Java 2 实用教程(第5版)>我还在网上买了一本<Head ...

  5. load 过高分析办法

    1.top -H 找到占用cpu较高的进程2.top -Hp pid 找到该进程下占用cpu较高的线程id3.sudo -u adminjstack -F 进程id > ~/stack.txt ...

  6. Error running Tomcat8: Address localhost:xxxx is already in use

    参考自: https://blog.csdn.net/huazhongkejidaxuezpp/article/details/41813683 第一步,命令提示符号,执行命令:netstat -an ...

  7. node.js中express的Router路由的使用

    express中的Router作用就是为了方便我们更好的根据路由去分模块.避免将所有路由都写在入口文件中. 一.简单的使用Router const express = require('express ...

  8. ABP框架 配置权限、本地语言文件、左侧菜单项

    1.Framework.Core>Authorization>PermissionNames.cs 这里新增权限项 namespace Framework.Authorization { ...

  9. abp xunit Can not register IHostingEnvironment. It should be a non-abstract class. If not, it should be registered before.”

    在测试项目的ServiceCollectionRegistrar类提前注册.

  10. CentOS 7升级Python到3.5后yum出错

    CentOS 7升级Python到3.5后,我跟以前CentOS 6一样,在/usr/bin/python创建了一个指向Python 3的软连接,然后将/usr/bin/yum的顶部的: !/usr/ ...