散列表(也叫哈希表),是根据关键码值直接进行访问的数据结构,也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

-

数据结构中,有个时间算法复杂度O(n)的概念来衡量某种算法在时间效率上的优劣。哈希表的理想算法复杂度为O(1),也就是说利用哈希表查找某个值,系统所使用的时间在理想情况下为定值,这就是它的优势。那么哈希表是如何做到这一点的呢?

-

我们定义一个很大的有序数组,想要得到位于该数组第n个位置的值,它的算法复杂度为O(1)。哈希表利用哈希函数将需要存储的内容的关键值转换为这个有序数组中的某个值,在被存储内容和有序数组之间建立了映射关系。这样,下次我们对这个值进行查找时只要使用同一个哈希函数对关键值进行转换,找到这个数组值就可以了。

-

我们来举个例子。假设我们要做个存储结构,需要存储下来寰联的人物,以及他们的详细信息。我们用他们的名字来作为存储的关键值,例如:刘凡,傅勇,沈卫国,郑彬,张宝东……等等。这个时候我们如果想用一般的方法来查找这些英雄豪杰,需要遍历整个存储空间,如果这些英雄豪杰一共有n个,那么这时候的时间算法复杂度为O(n)。显然如果n值很大,每次想要找到某个英雄就需要比较长的时间。

-

此时我们先定义一个大的有序结构数组HashValue[m],用来存放各位英雄豪杰的信息。然后编写一个哈希函数ChangeToHashValue (name),函数的具体内容就不细说了,反正这个函数会将这些做为关键值的名字转换为HashValue[m]中的某个下标值x。然后可以将英雄的信息放进HashValue[x]中去。这样,可以将所有英雄的信息存储起来。当查询的时候再使用哈希函数ChangeToHashValue(name)得到这个下标值,这样就很容易得到了这个英雄的信息。例如:ChangeToHashValue(刘凡)为10,那么就将刘备存储到HashValue [10]里面。当查询的时候再次使用ChangeToHashValue(刘凡)得到10,这个时候我们就可以很容易找到刘凡的所有信息。在实际应用中如果我们想把所有的英雄豪杰都存储进系统时,需要定义m>n。就是数组的大小要大于需要存储的信息量,所以说哈希表是一个以空间换取时间的数据结构。

-

这个时候问题来了,出现了这种情况ChangeToHashValue(郑彬)和ChangeToHashValue(沈卫国)得到的值是一样的,都是 250,我们岂不是在存储过程中会遇到麻烦,怎么安排他们二位的地方呢(总不能让二位打一架,谁赢了谁呆在那吧),这就需要一个解决冲突的方法。当遇到这种情况时我们可以这样处理,先存储好了郑彬,当沈卫国进入系统时会发现郑彬已经是250了,那咱就加一位,251得了,这不就解决了。我们查找沈卫国的时候也是,一看250不是沈卫国,那就加个1,就找到了。这时还存在一个问题。直接用ChangeToHashValue(张宝东)为251,沈卫国已经早早占了他的地方,那就再加1存到252呗。呵呵,这时我们会发现,当哈希函数冲突发生的机率很高时,可能会有一群英雄豪杰在250这个值后面扎堆排队。要命的是查找的时候,时间算法复杂度早已不是O(1)了(所以我们说理想情况下哈希表的时间算法复杂度为O(1))。这就是说哈希函数的编写是哈希表的一个关键问题,会涉及到一个存储值在哈希表中的统计分布。如果哈希函数已经定义好了,冲突的解决就成为了改变系统性能的关键因素。其实还有很多种方法来解决冲突情况下的存储和查找问题,不一定非要线性向后排队,如果有好的哈希表冲突的解决方法也能很大程度上提高系统的效率。

什么叫哈希表(Hash Table)的更多相关文章

  1. 算法与数据结构基础 - 哈希表(Hash Table)

    Hash Table基础 哈希表(Hash Table)是常用的数据结构,其运用哈希函数(hash function)实现映射,内部使用开放定址.拉链法等方式解决哈希冲突,使得读写时间复杂度平均为O( ...

  2. PHP关联数组和哈希表(hash table) 未指定

    PHP有数据的一个非常重要的一类,就是关联数组.又称为哈希表(hash table),是一种很好用的数据结构. 在程序中.我们可能会遇到须要消重的问题,举一个最简单的模型: 有一份username列表 ...

  3. 词典(二) 哈希表(Hash table)

    散列表(hashtable)是一种高效的词典结构,可以在期望的常数时间内实现对词典的所有接口的操作.散列完全摒弃了关键码有序的条件,所以可以突破CBA式算法的复杂度界限. 散列表 逻辑上,有一系列可以 ...

  4. 数据结构 哈希表(Hash Table)_哈希概述

    哈希表支持一种最有效的检索方法:散列. 从根来上说,一个哈希表包含一个数组,通过特殊的索引值(键)来访问数组中的元素. 哈希表的主要思想是通过一个哈希函数,在所有可能的键与槽位之间建立一张映射表.哈希 ...

  5. 哈希表(Hash table)

  6. Redis原理再学习04:数据结构-哈希表hash表(dict字典)

    哈希函数简介 哈希函数(hash function),又叫散列函数,哈希算法.散列函数把数据"压缩"成摘要,有的也叫"指纹",它使数据量变小且数据格式大小也固定 ...

  7. Hash表 hash table 又名散列表

    直接进去主题好了. 什么是哈希表? 哈希表(Hash table,也叫散列表),是根据key而直接进行访问的数据结构.也就是说,它通过把key映射到表中一个位置来访问记录,以加快查找的速度.这个映射函 ...

  8. 哈希表(Hash)的应用

    $hs=@() #定义数组 $hs=@{} #定义Hash表,使用哈希表的键可以直接访问对应的值,如 $hs["王五"] 或者 $hs.王五 的值为 75 $hs=@''@ #定义 ...

  9. (四)Redis哈希表Hash操作

    Hash全部命令如下: hset key field value # 将哈希表key中的字段field的值设为value hget key field # 返回哈希表key中的字段field的值val ...

随机推荐

  1. 内核探测工具systemtap简介

    systemtap是内核开发者必须要掌握的一个工具,本文我将简单介绍一下此工具,后续将会有系列文章介绍systemtap的用法. 什么是systemtap 假如现在有这么一个需求:需要获取正在运行的 ...

  2. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  3. Struts2中的EasyUI

    Struts2中的EasyUI 一.easy UI是类似于jQuery UI的插件库,它提供了丰富的各种常用插件:tree.datagrid... tree插件: 语法:$(selector).tre ...

  4. codevs 1536 海战

    时间限制: 1 s  空间限制: 256000 KB  题目等级 : 白银 Silver 题目描述 Description 在峰会期间,武装部队得处于高度戒备.警察将监视每一条大街,军队将保卫建筑物, ...

  5. 【C#】【Thread】SpinWait

    System.Threading.SpinWait 是一个轻量同步类型,可以在低级别方案中使用它来避免内核事件所需的高开销的上下文切换和内核转换. 在多核计算机上,当预计资源不会保留很长一段时间时,如 ...

  6. 使用java库中的对称加密算法

    对称加密算法是说加密方和解密方使用相同的密钥.常见的对称加密算法包括4个,DES,DESede(3DES),AES,PBE. 本文讨论的内容是加密算法,不是Message Digest,不是编码.下面 ...

  7. python基础-迭代器和生成器

    一.递归和迭代 1.递归:(问路示例) 递归算法是一种直接或者间接地调用自身算法的过程.在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解. 2.迭代:简单理 ...

  8. 解决:Win 10 + Mint 18双系统时间不同步,更换系统启动项顺序

    1.win10 & mint 18双系统时间同步: 先打开终端下更新一下时间,确保时间无误: sudo apt-get install ntpdate sudo ntpdate time.wi ...

  9. SQL 优化tips

    1. 陷阱, 1)几个表进行join,然后过滤 等价于 2)分别过滤为小表后,再join? 并不完全.2)确实比1)效率高,但要注意一些NULL值过滤.否则2)得到的结果比1)多

  10. 【Codeforces710F】String Set Queries (强制在线)AC自动机 + 二进制分组

    F. String Set Queries time limit per test:3 seconds memory limit per test:768 megabytes input:standa ...