容易想到设f[i][j][k]为i~j区间以k为根是否能构成bst。这样是O(n4)的。考虑将状态改为f[i][j][0/1]表示i~j区间以i-1/j+1为根能否构成bst。显然如果是i-1作为根的话i~j区间都在它的右子树,所以转移时枚举右子树的根并判断是否合法,j+1类似。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 710
int n,a[N];
bool flag[N][N],f[N][N][];
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
if (gcd(a[i],a[j])>) flag[i][j]=;
for (int i=;i<=n+;i++) f[i][i-][]=f[i][i-][]=;
for (int k=;k<=n;k++)
for (int i=;i<=n-k+;i++)
{
int j=i+k-;
for (int d=i;d<=j;d++)
if (f[i][d-][]&&f[d+][j][])
{
if (flag[i-][d]) f[i][j][]=;
if (flag[j+][d]) f[i][j][]=;
}
}
for (int i=;i<=n;i++) if (f[][i-][]&&f[i+][n][]) {cout<<"Yes";return ;}
cout<<"No";
return ;
}

Codeforces 1025D(区间dp)的更多相关文章

  1. Recovering BST CodeForces - 1025D (区间dp, gcd)

    大意: 给定$n$个数, 任意两个$gcd>1$的数间可以连边, 求是否能构造一棵BST. 数据范围比较大, 刚开始写的$O(n^3\omega(1e9))$竟然T了..优化到$O(n^3)$才 ...

  2. CodeForces 512B(区间dp)

    D - Fox And Jumping Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64 ...

  3. codeforces 1140D(区间dp/思维题)

    D. Minimum Triangulation time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  4. Timetable CodeForces - 946D (区间dp)

    大意: n天, 每天m小时, 给定课程表, 每天的上课时间为第一个1到最后一个1, 一共可以逃k次课, 求最少上课时间. 每天显然是独立的, 对每天区间dp出逃$x$次课的最大减少时间, 再对$n$天 ...

  5. Codeforces 1114D(区间DP)

    题面 传送门 分析 法1(区间DP): 首先,我们可以把连续的相等区间缩成一个数,用unique来实现,不影响结果 {1,2,2,3,3,3,5,3,4}->{1,2,3,5,3,4} 先从一个 ...

  6. CodeForces - 1107E 区间DP

    和紫书上的Blocks UVA - 10559几乎是同一道题,只不过是得分计算不同 不过看了半天紫书上的题才会的,当时理解不够深刻啊 不过这是一道很好区间DP题 细节看代码 #include<c ...

  7. CodeForces 149D 区间DP Coloring Brackets

    染色有三个条件: 对于每个点来说要么不染色,要么染红色,要么染蓝色 对于每对配对的括号来说,有且只有一个一边的括号被染色 相邻的括号不能染成相同的颜色 首先可以根据给出的括号序列计算出括号的配对情况, ...

  8. Zuma CodeForces - 607B (区间DP)

    大意: 给定字符串, 每次删除一个回文子串, 求最少多少次删完. #include <iostream> #include <cstdio> #define REP(i,a,n ...

  9. Codeforces 940 区间DP单调队列优化

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  10. CodeForces - 1025D: Recovering BST (区间DP)

    Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...

随机推荐

  1. Codecraft-18 and Codeforces Round #458:D,Bash and a Tough Math Puzzle

    题目传送门 题目大意:Bash喜欢对数列进行操作.第一种操作是询问l~r区间内的gcd值是否几乎为x,几乎为表示能否至多修改一个数达到.第二种操作是将ai修改为x.总共Q个询问,N个数. Soluti ...

  2. 厦门Uber优步司机奖励政策(12月28日到1月3日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 抽样分布(3) F分布

    定义 设U~χ2(n1), V~χ2(n2),且U,V相互独立,则称随机变量 服从自由度为(n1,n2)的F分布,记为F~F(n1,n2),其中n1叫做第一自由度,n2叫做第二自由度. F分布的概率密 ...

  4. 如何利用Navicat导入/导出mssql中的数据

    sqlserver,在第一次使用该软件进行"连接"的时候,会提示安装"Microsoft Sqlsever Navicat Client.",这时直接点击&qu ...

  5. 「赛后补题」Meeting(HDU-5521)

    题意 A,B两个人分别在1和n区.每个区有若干点(区之间的点可以重复,各个区内点间的距离一致),给出区之间有联系的图以及到达所需时间.求两个人见面最短时间以及在哪个区碰面(可有多个) 分析 隐式图搜索 ...

  6. [wirtting] top01 independent

    Do you agree or disagree with the following statement? At universities and colleges, sports and soci ...

  7. 【循环控制器】-(针对中间部分要循环的场景,相当于loadrunner的action部分)

    一般使用 setup线程组 + teardown组 针对中间要循环的部分   使用循环处理器    单独循环中间的部分,相当于loadrunner的action部分

  8. [Clr via C#读书笔记]Cp3共享程序集和强命名程

    Cp3共享程序集和强命名程序集 私有方式部署+全局方式部署:弱命名程序集+强命名程序集 强命名程序集使用发布者的公钥私钥进行签名,唯一标识发布者. 共享dll被全部复制到System32中 强命名程序 ...

  9. php redis和java混用问题

    目前项目是 一个php 一个java  共用一套 redis  key  value 也都一样,  java 使用 gson 解析json   会将php 设置的json里面看  {"a&q ...

  10. Tensorflow中使用tfrecord方式读取数据-深度学习-周振洋

    本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用 ...