Codeforces 1025D(区间dp)
容易想到设f[i][j][k]为i~j区间以k为根是否能构成bst。这样是O(n4)的。考虑将状态改为f[i][j][0/1]表示i~j区间以i-1/j+1为根能否构成bst。显然如果是i-1作为根的话i~j区间都在它的右子树,所以转移时枚举右子树的根并判断是否合法,j+1类似。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 710
int n,a[N];
bool flag[N][N],f[N][N][];
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
if (gcd(a[i],a[j])>) flag[i][j]=;
for (int i=;i<=n+;i++) f[i][i-][]=f[i][i-][]=;
for (int k=;k<=n;k++)
for (int i=;i<=n-k+;i++)
{
int j=i+k-;
for (int d=i;d<=j;d++)
if (f[i][d-][]&&f[d+][j][])
{
if (flag[i-][d]) f[i][j][]=;
if (flag[j+][d]) f[i][j][]=;
}
}
for (int i=;i<=n;i++) if (f[][i-][]&&f[i+][n][]) {cout<<"Yes";return ;}
cout<<"No";
return ;
}
Codeforces 1025D(区间dp)的更多相关文章
- Recovering BST CodeForces - 1025D (区间dp, gcd)
大意: 给定$n$个数, 任意两个$gcd>1$的数间可以连边, 求是否能构造一棵BST. 数据范围比较大, 刚开始写的$O(n^3\omega(1e9))$竟然T了..优化到$O(n^3)$才 ...
- CodeForces 512B(区间dp)
D - Fox And Jumping Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64 ...
- codeforces 1140D(区间dp/思维题)
D. Minimum Triangulation time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Timetable CodeForces - 946D (区间dp)
大意: n天, 每天m小时, 给定课程表, 每天的上课时间为第一个1到最后一个1, 一共可以逃k次课, 求最少上课时间. 每天显然是独立的, 对每天区间dp出逃$x$次课的最大减少时间, 再对$n$天 ...
- Codeforces 1114D(区间DP)
题面 传送门 分析 法1(区间DP): 首先,我们可以把连续的相等区间缩成一个数,用unique来实现,不影响结果 {1,2,2,3,3,3,5,3,4}->{1,2,3,5,3,4} 先从一个 ...
- CodeForces - 1107E 区间DP
和紫书上的Blocks UVA - 10559几乎是同一道题,只不过是得分计算不同 不过看了半天紫书上的题才会的,当时理解不够深刻啊 不过这是一道很好区间DP题 细节看代码 #include<c ...
- CodeForces 149D 区间DP Coloring Brackets
染色有三个条件: 对于每个点来说要么不染色,要么染红色,要么染蓝色 对于每对配对的括号来说,有且只有一个一边的括号被染色 相邻的括号不能染成相同的颜色 首先可以根据给出的括号序列计算出括号的配对情况, ...
- Zuma CodeForces - 607B (区间DP)
大意: 给定字符串, 每次删除一个回文子串, 求最少多少次删完. #include <iostream> #include <cstdio> #define REP(i,a,n ...
- Codeforces 940 区间DP单调队列优化
A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...
- CodeForces - 1025D: Recovering BST (区间DP)
Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...
随机推荐
- CF 1027 F. Session in BSU
F. Session in BSU https://codeforces.com/contest/1027/problem/F 题意: n场考试,每场可以安排在第ai天或者第bi天,问n场考完最少需要 ...
- 「日常训练」Alternative Thinking(Codeforces Round #334 Div.2 C)
题意与分析 (CodeForces - 603A) 这题真的做的我头疼的不得了,各种构造样例去分析性质... 题意是这样的:给出01字符串.可以在这个字符串中选择一个起点和一个终点使得这个连续区间内所 ...
- 微信小程序—day05
小程序云服务器--环境配置 本来想要买腾讯云的云服务器,作为小程序的服务端的.无奈,腾讯云卖的太贵了,比阿里云要贵一倍,想想还是算了. 但是,没有服务端的接受,小程序的一些功能是实现不了的.找了一圈, ...
- WEB页面常用基本控件测试用例
一.树控件的测试外观操作 1)项目中的所有树是否风格一致 2)树结构的默认状态是怎样的.比如默认树是否是展开,是展开几级? 是否有默认的焦点? 默认值是什么?展开的节点图标和颜色? 2.执行操作 1 ...
- APP功能性测试-2
安装与卸载 应用是否可以在不同的安卓版本上安装(过低不能适配) 安装后是否可以正常运行 安装空间不足时是否有相应提示 如果应用需要通过网络验证之类的安装,需要测试一下断网情况下是否有相应提示 安装过程 ...
- Python列表操作大全(非常全)
Python列表操作大全(非常全!!!) 对于python列表的理解可以和C语言里面的数组进行比较性的记忆与对照,它们比较相似,对于python里面列表的定义可以直接用方括号里加所包含对象的方法,并且 ...
- VMware SDK使用指南
刚开始用VMware官方推荐的SDK,真的是又臭又长,代码结构不清晰,易读性差.后来VMware的同学给推荐了一款开源的SDK,一上手感觉工作效率提高了100倍!推荐大家使用~. 该SDK对VMwar ...
- AngularJS 初探
AngularJS,诞生于2009年,由Misko Hevery等人创建,后为Google所收购.这是一款优秀的前端JS框架,已经被用于Google的多款产品当中.AngularJS有着诸多特性,最为 ...
- Skype for Business Server 方案
方案说明: 高可用性的配置屏蔽了单点故障,使得当一个服务器节点失效时,另外的可用的节点能够进行服务的接管.可伸缩性的配置可以保证当即时沟通平台的使用用户增加时,该平台应该具有良好的可伸缩性,能非常方便 ...
- kvm网络虚拟化
网络虚拟化是虚拟化技术中最复杂的部分,学习难度最大. 但因为网络是虚拟化中非常重要的资源,所以再硬的骨头也必须要把它啃下来. 为了让大家对虚拟化网络的复杂程度有一个直观的认识,请看下图 这是 Open ...