Median Weight Bead(最短路—floyed传递闭包)
Description
A scale is given to compare the weights of beads. We can determine which one is heavier than the other between two beads. As the result, we now know that some beads are heavier than others. We are going to remove some beads which cannot have the medium weight.
For example, the following results show which bead is heavier after M comparisons where M=4 and N=5.
1. Bead 2 is heavier than Bead 1.
2. Bead 4 is heavier than Bead 3.
3. Bead 5 is heavier than Bead 1.
4. Bead 4 is heavier than Bead 2.
From the above results, though we cannot determine exactly which is the median bead, we know that Bead 1 and Bead 4 can never have the median weight: Beads 2, 4, 5 are heavier than Bead 1, and Beads 1, 2, 3 are lighter than Bead 4. Therefore, we can remove these two beads.
Write a program to count the number of beads which cannot have the median weight.
Input
The first line of input data contains an integer N (1 <= N <= 99) denoting the number of beads, and M denoting the number of pairs of beads compared. In each of the next M lines, two numbers are given where the first bead is heavier than the second bead.
Output
Sample Input
1
5 4
2 1
4 3
5 1
4 2
Sample Output
2 题目意思:对于T组输入输出,有n个珍珠(n为奇数),有m次称重机会,排列在前面编号的珍珠比后面的珍珠要重,求出能判断出有多少个珍珠的重量一定不
是中间值。 解题思路:在这里我们需要想明白的是要找的这个中间数,一定是重量要大于个数一半珍珠的重量或者是重量要小于个数一半珍珠的重量。
同时也要明白如果大于(小于)了一半的个数,一定不同时存在小于(大于)一半的个数。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m;
int map[200][200];
int floyd()
{
int i,j,k;
for(k=1; k<=n; k++)
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
{
if(map[i][k]&&map[k][j])
{
map[i][j]=1;///如果任意两个点能够通过第三个点发生关系,那么说明这两个点也是有关系的
}
}
}
int main()
{
int a,b,i,j,count,sum1,sum2,t,flag;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
memset(map,0,sizeof(map));
flag=n/2;
for(i=0; i<m; i++)
{
scanf("%d%d",&a,&b);
map[a][b]=1;///可以确定关系的利用邻接矩阵记录为1
}
floyd();
count=0;
for(i=1; i<=n; i++)
{
sum1=0;
sum2=0;
for(j=1; j<=n; j++)
{
if(map[i][j])///利用该矩阵求出比该点大的点
{
sum1++;
}
if(map[j][i])///利用该矩阵求出比该点小的点
{
sum2++;
} }
if(sum1>flag)///比该点大的点数超过了1/2,则这个点一定不是中值点
{
count++;
}
if(sum2>flag)///比该点小的点数超过了1/2,则这个点一定不是中值点
{
count++;
}
}
printf("%d\n",count);
}
return 0;
}
Median Weight Bead(最短路—floyed传递闭包)的更多相关文章
- POJ-1975 Median Weight Bead(Floyed)
Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...
- POJ 1975 Median Weight Bead
Median Weight Bead Time Limit: 1000ms Memory Limit: 30000KB This problem will be judged on PKU. Orig ...
- POJ1975 Median Weight Bead floyd传递闭包
Description There are N beads which of the same shape and size, but with different weights. N is an ...
- 珍珠 Median Weight Bead 977
描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...
- Cow Contest(最短路floyed传递闭包)
Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...
- poj 1975 Median Weight Bead(传递闭包 Floyd)
链接:poj 1975 题意:n个珠子,给定它们之间的重量关系.按重量排序.求确定肯定不排在中间的珠子的个数 分析:由于n为奇数.中间为(n+1)/2,对于某个珠子.若有至少有(n+1)/2个珠子比它 ...
- Median Weight Bead_floyd
Description There are N beads which of the same shape and size, but with different weights. N is an ...
- BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)
蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...
- 第十届山东省赛L题Median(floyd传递闭包)+ poj1975 (昨晚的课程总结错了,什么就出度出度,那应该是叫讨论一个元素与其余的关系)
Median Time Limit: 1 Second Memory Limit: 65536 KB Recall the definition of the median of elements w ...
随机推荐
- 在Java中用正则表达式判断一个字符串是否是数字的方法
package chengyujia; import java.util.regex.Pattern; public class NumberUtil { /** * 判断一个字符串是否是数字. * ...
- yii 后台配置独立子域名方法
我这里安装的是宝塔面板集成的环境WNMP,官网上虽然也有,但是写的并不明确,对我这种用YII的新手来说也很头疼,折腾了半天终于弄好,记录一下. 首先解析一个子域名:back.domain.com: 用 ...
- 【 es搜索】
地图搜索实现: ①参数: 左下角经纬度和右上角经纬度 图层数(zoom) 关键字等各种数据库中的字段 排序方式 具体的坐标点+距离 ②实现 a.用es作为关系库,首先先mapping所有的字段,然后用 ...
- Hbase过滤器
Hbase过滤器简介 HBase的基本API,包括增.删.改.查等,增.删都是相对简单的操作,与传统的RDBMS相比,这里的查询操作略显苍白,只能根据特性的行键进行查询(Get)或者根据行键的范围来查 ...
- Altium Designer常用快捷键
一:Altium原理图快捷键: Shift+左键选择 :实现多个目标选择 Ctrl+左键拖动 :保持连线拖动目标 Shift+c :清除当前过滤(?? ...
- 推荐 的FPGA设计经验(3) 物理实现和时间闭环优化
Optimizing Physical Implementation and Timing Closure Planning Physical Implementation When planning ...
- 无限滚动HTML UL结构
http://framework7.taobao.org/docs/infinite-scroll.html#.VUjA7NOqqko
- 通过c#操作word文档的其他方式
如果不嫌麻烦可以选择MS的word组件,因为过于庞大复杂.一般都是在无法满足要求的情况下才采用此种方式 参考链接:http://blog.csdn.net/lu930124/article/detai ...
- Windows 显示环境变量
echo %% D:\>echo %python3% C:\Users\zy\AppData\Local\Programs\Python\Python36 D:\> 我的环境变量如下:
- springBoot Swagger2 接口文档生成
// 生成配置类 package com.irm.jd.config.swagger; import org.springframework.context.annotation.Bean; impo ...