Description

There are N beads which of the same shape and size, but with different weights. N is an odd number and the beads are labeled as 1, 2, ..., N. Your task is to find the bead whose weight is median (the ((N+1)/2)th among all beads). The following comparison has been performed on some pairs of beads: 
A scale is given to compare the weights of beads. We can determine which one is heavier than the other between two beads. As the result, we now know that some beads are heavier than others. We are going to remove some beads which cannot have the medium weight.

For example, the following results show which bead is heavier after M comparisons where M=4 and N=5.

1.	Bead 2 is heavier than Bead 1.

2. Bead 4 is heavier than Bead 3.

3. Bead 5 is heavier than Bead 1.

4. Bead 4 is heavier than Bead 2.

From the above results, though we cannot determine exactly which is the median bead, we know that Bead 1 and Bead 4 can never have the median weight: Beads 2, 4, 5 are heavier than Bead 1, and Beads 1, 2, 3 are lighter than Bead 4. Therefore, we can remove these two beads.

Write a program to count the number of beads which cannot have the median weight.

Input

The first line of the input file contains a single integer t (1 <= t <= 11), the number of test cases, followed by the input data for each test case. The input for each test case will be as follows: 
The first line of input data contains an integer N (1 <= N <= 99) denoting the number of beads, and M denoting the number of pairs of beads compared. In each of the next M lines, two numbers are given where the first bead is heavier than the second bead. 

Output

There should be one line per test case. Print the number of beads which can never have the medium weight.

Sample Input

1
5 4
2 1
4 3
5 1
4 2

Sample Output

2

题目意思:对于T组输入输出,有n个珍珠(n为奇数),有m次称重机会,排列在前面编号的珍珠比后面的珍珠要重,求出能判断出有多少个珍珠的重量一定不
是中间值。 解题思路:在这里我们需要想明白的是要找的这个中间数,一定是重量要大于个数一半珍珠的重量或者是重量要小于个数一半珍珠的重量。
同时也要明白如果大于(小于)了一半的个数,一定不同时存在小于(大于)一半的个数。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m;
int map[200][200];
int floyd()
{
int i,j,k;
for(k=1; k<=n; k++)
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
{
if(map[i][k]&&map[k][j])
{
map[i][j]=1;///如果任意两个点能够通过第三个点发生关系,那么说明这两个点也是有关系的
}
}
}
int main()
{
int a,b,i,j,count,sum1,sum2,t,flag;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
memset(map,0,sizeof(map));
flag=n/2;
for(i=0; i<m; i++)
{
scanf("%d%d",&a,&b);
map[a][b]=1;///可以确定关系的利用邻接矩阵记录为1
}
floyd();
count=0;
for(i=1; i<=n; i++)
{
sum1=0;
sum2=0;
for(j=1; j<=n; j++)
{
if(map[i][j])///利用该矩阵求出比该点大的点
{
sum1++;
}
if(map[j][i])///利用该矩阵求出比该点小的点
{
sum2++;
} }
if(sum1>flag)///比该点大的点数超过了1/2,则这个点一定不是中值点
{
count++;
}
if(sum2>flag)///比该点小的点数超过了1/2,则这个点一定不是中值点
{
count++;
}
}
printf("%d\n",count);
}
return 0;
}

  

 

  

 

Median Weight Bead(最短路—floyed传递闭包)的更多相关文章

  1. POJ-1975 Median Weight Bead(Floyed)

    Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...

  2. POJ 1975 Median Weight Bead

    Median Weight Bead Time Limit: 1000ms Memory Limit: 30000KB This problem will be judged on PKU. Orig ...

  3. POJ1975 Median Weight Bead floyd传递闭包

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  4. 珍珠 Median Weight Bead 977

    描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...

  5. Cow Contest(最短路floyed传递闭包)

    Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...

  6. poj 1975 Median Weight Bead(传递闭包 Floyd)

    链接:poj 1975 题意:n个珠子,给定它们之间的重量关系.按重量排序.求确定肯定不排在中间的珠子的个数 分析:由于n为奇数.中间为(n+1)/2,对于某个珠子.若有至少有(n+1)/2个珠子比它 ...

  7. Median Weight Bead_floyd

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  8. BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)

    蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...

  9. 第十届山东省赛L题Median(floyd传递闭包)+ poj1975 (昨晚的课程总结错了,什么就出度出度,那应该是叫讨论一个元素与其余的关系)

    Median Time Limit: 1 Second Memory Limit: 65536 KB Recall the definition of the median of elements w ...

随机推荐

  1. 04.nginx使用

    博客为日常工作学习积累总结: 1.安装依赖包 安装pcre :yum install pcre pcre-devel -y        安装openssl:yum install openssl o ...

  2. table表单制作个人简历

    应用table表单,编程个人简历表单,同时运用了跨行rowspan和跨列colspan. <!DOCTYPE html> <html> <head> <met ...

  3. thinkphp5实现定位功能

    一.所需资源链接:百度网盘.主要包含一个ip地址库和一个ip类文件. 二.下载好后,在extend目录下面创建一个location的目录,将下载的文件解压到该目录.给类文件增加一个命名空间,便于我们使 ...

  4. QQ空间认证之数据篇

    最近,我们发现可以利用开通企鹅媒体平台的方式开通QQ公众号从而绑定我们的QQ号,这样我们所绑定的QQ号就成了认证空间了. 虽说这样很快捷的就认证了我们的QQ空间,但是,起有利也有弊.任何事情都不是十全 ...

  5. Lavavel5.5源代码 - RedisQueue是怎么实现

    队列的基本功能: 1.立即执行:yes 2.延迟执行:yes 3.保证至少执行一次:yes 4.必须执行且最多执行一次:no 用到的数据结构: list.Sorted sets 延迟执行的机制: 1. ...

  6. 常量的三种定义方式和static在c语言中的三种修饰

    c语言的常量在执行期间为固定值,在定义后无法被修改常量可以是任何的数据基本类型,可以为整形,浮点常量,字符和字符串常量1,使用const关键字2, 使用宏定义3,使用枚举常量 枚举: #include ...

  7. #!/System/Library/Frameworks/Ruby.framework/Versions/Current/usr/bin/ruby

    #!/System/Library/Frameworks/Ruby.framework/Versions/Current/usr/bin/ruby # This script installs to ...

  8. Java——多线程---18.11.22

    多线程代码:Runnable方法 package com.hebust.java.third; import java.util.Random; public class SaleTicket imp ...

  9. WebRTC中Android Demo中的摄像头从采集到预览流程

    APPRTC-Demo调用流程 1.CallActivity#onCreate 执行startCall开始连接或创建房间 2.WebSocketClient#connectToRoom 请求一次服务器 ...

  10. uCOS-II中的任务切换-图解多种任务调度时机与问题

    [@.1 任务调度时机] 之前的一篇文章分析了具体的uCOS-II中的任务切换机制,是从函数调用的角度上分析的.这次我具体从整个程序运行的时间上来看,分析多种任务调度发生的时机.以下所有图片均可点击放 ...