图论:最短路-Bellman-Ford
我们之前介绍了一种,(最常用的)SPFA算法,SPFA算法是对Bellman-Ford算法的队列优化,用队列替代了Bellman-Ford中的循环检查部分
然后这里我们介绍Bellman-Ford算法是为了介绍其对负权环的判定部分,以及这部分在SPFA的体现
首先是建图部分,邻接链表,其实对于Bellman-Ford算法来说,边表足矣
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
void addedge(int x,int y,int z)
{
cnt++;e[cnt].u=x;e[cnt].t=y;e[cnt].w=z;
e[cnt].next=g[x];g[x]=cnt;
}
原本青涩的邻接表变成了现在的样子,自从看了黄学长的代码风格,压行写可能更加舒适一些。。
这里我们对于每一条边,记录其起始节点,和边表结构统一
然后,是算法的核心部分:
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
for(int k=;k<n-;k++)
for(int i=;i<=m;i++)
{
int x=e[i].u,y=e[i].t;
if(d[x]<INF) d[y]=min(d[y],d[x]+e[i].w);
}
其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在n-1次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成
然后是对于负权环的判断部分:
bool flag=;
for(int i=;i<=m;i++)
if(d[e[i].t]>d[e[i].u]+e[i].w){flag = ;break;}
return flag;
对于每一条边进行检查,如果发现还能松弛,就存在负权环
最后给出完整实现,请注意如果每一条边的长度过大,在INF处一定不要越界,还有无向图的二倍边一定要记住
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
const int maxm=;
const int INF=0x7fffffff;
int s,n,m,cnt;
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
void addedge(int x,int y,int z)
{
cnt++;e[cnt].u=x;e[cnt].t=y;e[cnt].w=z;
e[cnt].next=g[x];g[x]=cnt;
}
bool bellman_ford(int s)
{
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
for(int k=;k<n-;k++)
for(int i=;i<=m;i++)
{
int x=e[i].u,y=e[i].t;
if(d[x]<INF) d[y]=min(d[y],d[x]+e[i].w);
}
bool flag=;
for(int i=;i<=m;i++)
if(d[e[i].t]>d[e[i].u]+e[i].w){flag = ;break;}
return flag;
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
int x,y,z;
for(int i=;i<=m;i++) {scanf("%d%d%d",&x,&y,&z);addedge(x,y,z);}
bellman_ford(s);
for(int i=;i<=n;i++) {printf("%d ",d[i]);}
return ;
}
在SPFA中开一个数组记录每一个点的入队次数,如果一个点重复入队了n次,说明存在负权环
总体来说,SPFA算法比Bellman-Ford更加优越,稠密图情况二者的效率是差不多的
稀疏图来说,SPFA可能要快于Dijkstra并且,网格图可以把SPFA卡回原型
图论:最短路-Bellman-Ford的更多相关文章
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- 图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...
- HDU 5521 [图论][最短路][建图灵感]
/* 思前想后 还是决定坚持写博客吧... 题意: n个点,m个集合.每个集合里边的点是联通的且任意两点之间有一条dis[i]的边(每个集合一个dis[i]) 求同时从第1个点和第n个点出发的两个人相 ...
- 【GDOI】【图论-最短路】时间与空间之旅
最近打的一场校内训练的某题原题... 题目如下: Description 公元22××年,宇宙中最普遍的交通工具是spaceship.spaceship的出现使得星系之间的联系变得更为紧密,所以spa ...
- 图论(最短路&最小生成树)
图论 图的定义与概念 图的分类 图,根据点数和边数可分为三种:完全图,稠密图与稀疏图. 完全图,即\(m=n^2\)的图\((m\)为边数,\(n\)为点数\()\).如: 1 1 0 1 2 1 1 ...
随机推荐
- Centos6配置开启FTP Server
vsftpd作为FTP服务器,在Linux系统中是非常常用的.下面我们介绍如何在centos系统上安装vsftp. 什么是vsftpd vsftpd是一款在Linux发行版中最受推崇的FTP服务器程序 ...
- nginx 添加的配置信息
使用logrotate管理Nginx日志配置如下: [root@vm-10-129-93-51 nginx]# vi /etc/logrotate.d/nginx /letv/log/nginx/*. ...
- 2017-2018-2 20172314 『Java程序设计』课程 结对编程练习_四则运算
相关过程截图 截图为我负责的部分关于计算的测试 关键代码解释 根据代码中的部分解释,这部分代码实现了结果的整数和分数的输出,如果算出的结果为一个真分数,就输出真分数的形式,如果结果为整数,就输出整数形 ...
- LintCode-54.转换字符串到整数
转换字符串到整数 实现atoi这个函数,将一个字符串转换为整数.如果没有合法的整数,返回0.如果整数超出了32位整数的范围,返回INT_MAX(2147483647)如果是正整数,或者INT_MIN( ...
- Swift-闭包理解(二)
简明扼要的闭包表达式 其实Swift已经为我们提供了很多简化的语法,可以让我们保证代码的高可读性和维护性.还用上面的例子来说明,对于 greetPeople 这个全局函数来说,其实只需要使用一次,所 ...
- JS DOM(2017.12.28)
一.获得元素节点的方法 document.getElementById() 根据Id获取元素节点 document.getElementsByName() 根据name获取元素节点 遍 ...
- 【Redis】- 安装为windows服务
1.安装redis服务 echo install redis-server redis-server.exe --service-install redis.windows.conf --loglev ...
- 基于实现Controller接口的简单Spring工程
这个Spring工程的特点是:实现了Controller接口(这样就可以在url中传参数?,待调查) 一下为代码,可运行. 1,web.xml <servlet> <servlet- ...
- java基础简介
一.软件开发 软件:是由数据和指令组成的(例:计算器) 如何实现软件开发呢? 就是使用开发工具和计算机语言做出东西来 二.常用dos命令 d: 回车 盘符切换 dir(directory):列出 ...
- BZOJ1588:[HNOI2002]营业额统计——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1588 Description Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务 ...