http://www.lightoj.com/volume_showproblem.php?problem=1340

题意:问n!在b进制下至少有t个后缀零,求最大的b。

思路:很容易想到一个数通过分解素因子可以得到最大的指数。那么问题关键在于求得n!的素因子的指数,找到指数大于t的所有素因子,再将那些指数除去t,剩下的数就是最大的b了。分解阶乘时,对n不断除素数p,直到n为0时,此时商的和即该素因子的指数。

/** @Date    : 2016-11-30-19.35
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/ #include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+2000;
const int mod = 10000019;
LL pri[N];
int c = 0;
bool vis[N]; void prime()
{
for(int i = 2; i < N; i++)
{
if(!vis[i])
{
for(int j = i + i; j < N; j+= i)
{
if(!vis[j])
vis[j] = 1;
}
pri[c++] = i;
}
}
} LL fpow(LL a, LL n)
{
LL r = 1;
while(n > 0)
{
if(n & 1)
r = r * a % mod;
a = a * a % mod;
n >>= 1;
}
return r;
} int main()
{
prime();
int T;
int cnt = 0;
cin >> T;
while(T--)
{
LL n;
LL r;
cin >> n >> r;
LL ans = 1;
for(int i = 0; i < c && pri[i] <= n; i++)
{
LL t = n;
LL ct = 0;
while(t)
{
ct += t / pri[i];
t /= pri[i];
}
if(ct >= r)
ans = ans * fpow(pri[i], ct/r) % mod;
if(ct < r)
break;
}
if(ans == 1)
printf("Case %d: -1\n", ++cnt);
else
printf("Case %d: %d\n", ++cnt, ans);
}
return 0;
}

LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子的更多相关文章

  1. 1340 - Story of Tomisu Ghost

    1340 - Story of Tomisu Ghost   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: ...

  2. BNU 13259.Story of Tomisu Ghost 分解质因子

    Story of Tomisu Ghost It is now 2150 AD and problem-setters are having a horrified time as the ghost ...

  3. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m

    给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...

  4. 数论-质数 poj2689,阶乘分解,求阶乘的尾零hdu1124, 求尾零为x的最小阶乘

    /* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这 ...

  5. luogu1445 [violet]樱花 阶乘分解

    题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...

  6. 给定n,求1/x + 1/y = 1/n (x<=y)的解数~hdu-1299~(分解素因子详解)

    链接:https://www.nowcoder.com/acm/contest/90/F来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数.(x.y.n均为正整 ...

  7. FZU OJ 1075 :分解素因子

    Problem 1075 分解素因子 Accept: 2161    Submit: 4126Time Limit: 1000 mSec    Memory Limit : 32768 KB  Pro ...

  8. fuzhou 1075 分解素因子

    Problem 1075 分解素因子 Accept: 1331    Submit: 2523Time Limit: 1000 mSec    Memory Limit : 32768 KB Prob ...

  9. FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】

    [唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...

随机推荐

  1. js实现滑动器效果

    最近公司在做一个项目,页面中要用到滑动器效果,我的第一反应是使用HTML5 input类型中的range类型,但马上我就否定了这个想法,因为range类型存在浏览器的兼容性问题(在主流浏览器中).但又 ...

  2. Unicode,UTF-32,UTF-16,UTF-8到底是啥关系?

    编码的目的,就是给抽象的字符赋予一个数值,好在计算机里面表示.常见的ASCII使用8bit给字符编码,但是实际只使用了7bit,最高位没有使用,因此,只能表示128个字符:ISO-8859-1(也叫L ...

  3. C语言中动态内存的分配(malloc,realloc)

    动态内存分配:根据需要随时开辟,随时释放的内存分配方式.分配时机和释放时机完全由程序员决定,由于没有数据声明,这部分空间没有名字.无法像使用变量或数组那样通过变量名或数组名引用其中的数据,只能通过指针 ...

  4. Python练习—循环

    1.输入n的值,求出n的阶乘. s=1 n = int(input("请输入一个数")) for i in range(1,n+1): s=s*i print(s) 2.折纸上月球 ...

  5. Windows平台下安装.net coreclr

    .net coreclr 已经发布RC1版本,安装方法如下: 1.安装DNVM,DNVM是.net运行时管理器,负责管理所有版本的.net运行时(.net framework..net coreclr ...

  6. VS2005、VS2008中的快捷键、组合键大全

    Ctrl+E,D ----格式化全部代码 Ctrl+E,F ----格式化选中的代码 CTRL + SHIFT + B生成解决方案 CTRL + F7 生成编译 CTRL + O 打开文件 CTRL ...

  7. TCP系列10—连接管理—9、syncookie、fastopen与backlog

    这部分内容涉及较多linux实现,可以跳过. 一.listen系统调用对backlog的处理 当socket处于LISTEN或者CLOSED状态时,fastopen队列的长度可以通过TCP_FASTO ...

  8. Runtime之IMP指针,isa指针

    要了解 isa 指针先了解下类的定义在xcode中用快捷键Shift+Cmd+O 搜索objc.h 能看到类的定义:了解 Paste_Image.png 可以看出:objc_object:Object ...

  9. javascript 文字闪烁

    早上突然看到CSS里面的text-decoration属性的时候,发现blink仅有的火狐浏览器都不支持了.于是想使用js来实现这一效果. <script type="text/jav ...

  10. 详细图解jQuery对象,以及如何扩展jQuery插件

    详细图解jQuery对象,以及如何扩展jQuery插件 早几年学习前端,大家都非常热衷于研究jQuery源码.我还记得当初从jQuery源码中学到一星半点应用技巧的时候常会有一种发自内心的惊叹,“原来 ...