1.hive中基本操作;

DDL,DML

2.hive中函数

User-Defined Functions : UDF(用户自定义函数,简称JDF函数)
UDF: 一进一出  upper  lower substring(进来一条记录,出去还是一条记录)
UDAF:Aggregation(用户自定的聚合函数)  多进一出  count max min sum ...
UDTF: Table-Generation  一进多出

3.举例

show functions显示系统支持的函数

行数举例:split(),explode()

exercise:使用hive统计单词出现次数

explode把数组转成多行的数据

[hadoop@hadoop000 data]$ vi hive-wc.txt
hello,world,welcome
hello,welcome
hive> create table hive_wc(sentence string);
OK
Time taken: 1.083 seconds hive> load data local inpath '/home/hadoop/data/hive-wc.txt' into table hive_wc;
Loading data to table default.hive_wc
Table default.hive_wc stats: [numFiles=, totalSize=]
OK
Time taken: 1.539 seconds hive> select * from hive_wc;
OK
hello,world,welcome
hello,welcome Time taken: 0.536 seconds, Fetched: row(s)
hive> select split(sentence,",") from hive_wc;
OK
["hello","world","welcome"]
["hello","welcome"]
[""]
Time taken: 0.161 seconds, Fetched: row(s)
"hello"
"world"
"welcome"
"hello"
"welcome"

用一个SQL完成wordcount统计:

hive> select word, count() as c
> from (select explode(split(sentence,",")) as word from hive_wc) t
> group by word ;
Query ID = hadoop_20180613094545_920c2e72--47eb-9a9c-5e5a30ebb1ae
Total jobs =
Launching Job out of
Number of reduce tasks not specified. Estimated from input data size:
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1528851144815_0001, Tracking URL = http://hadoop000:8088/proxy/application_1528851144815_0001/
Kill Command = /home/hadoop/app/hadoop-2.6.-cdh5.7.0/bin/hadoop job -kill job_1528851144815_0001
Hadoop job information for Stage-: number of mappers: ; number of reducers:
-- ::, Stage- map = %, reduce = %
-- ::, Stage- map = %, reduce = %, Cumulative CPU 2.42 sec
-- ::, Stage- map = %, reduce = %, Cumulative CPU 4.31 sec
MapReduce Total cumulative CPU time: seconds msec
Ended Job = job_1528851144815_0001
MapReduce Jobs Launched:
Stage-Stage-: Map: Reduce: Cumulative CPU: 4.31 sec HDFS Read: HDFS Write: SUCCESS
Total MapReduce CPU Time Spent: seconds msec
OK hello
welcome
world
Time taken: 26.859 seconds, Fetched: row(s)

4.json类型数据

使用到的文件: rating.json

创建一张表 rating_json,上传数据,并查看前十行数据信息:

hive> create table rating_json(json string);
OK hive> load data local inpath '/home/hadoop/data/rating.json' into table rating_json;
Loading data to table default.rating_json
Table default.rating_json stats: [numFiles=, totalSize=]
OK hive> select * from rating_json limit ;
OK
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
{"movie":"","rate":"","time":"","userid":""}
Time taken: 0.195 seconds, Fetched: row(s)

对json的数据进行处理,json_tuple 是一个UDTF是 Hive0.7版本引进的:

hive> select
> json_tuple(json,"movie","rate","time","userid") as (movie,rate,time,userid)
> from rating_json limit ;
OK Time taken: 0.189 seconds, Fetched: row(s)

5.时间类型的转换:

[hadoop@hadoop000 data]$ more hive_row_number.txt
,,ruoze,M
,,jepson,M
,,wangwu,F
,,zhaoliu,F
,,tianqi,M
,,wangba,F
[hadoop@hadoop000 data]$
hive> create table hive_rownumber(id int,age int, name string, sex string)
> row format delimited fields terminated by ',';
OK
Time taken: 0.451 seconds
hive> load data local inpath '/home/hadoop/data/hive_row_number.txt' into table hive_rownumber;
Loading data to table hive3.hive_rownumber
Table hive3.hive_rownumber stats: [numFiles=, totalSize=]
OK
Time taken: 1.381 seconds
hive> select * from hive_rownumber ;
OK
ruoze M
jepson M
wangwu F
zhaoliu F
tianqi M
wangba F
Time taken: 0.455 seconds, Fetched: row(s)

需求查询出每种性别中年龄最大的两条数据 -- > topn:

分析:order by 是全局的排序,是做不到分组内的排序的 ;组内进行排序,就要用到窗口函数or分析函数

select id,age,name.sex

from

(select id,age,name,sex,

row_number() over(partition by sex order by age desc)

from hive_rownumber) t

where rank<=2;

hive> select id,age,name,sex
> from
> (select id,age,name,sex,
> row_number() over(partition by sex order by age desc) as rank
> from hive_rownumber) t
> where rank<=;
Query ID = hadoop_20180614202525_9829dc42-3c37--8b12-89c416589ebc
Total jobs =
Launching Job out of
Number of reduce tasks not specified. Estimated from input data size:
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1528975858636_0001, Tracking URL = http://hadoop000:/proxy/application_1528975858636_0001/
Kill Command = /home/hadoop/app/hadoop-2.6.-cdh5.7.0/bin/hadoop job -kill job_1528975858636_0001
Hadoop job information for Stage-: number of mappers: ; number of reducers:
-- ::, Stage- map = %, reduce = %
-- ::, Stage- map = %, reduce = %, Cumulative CPU 1.48 sec
-- ::, Stage- map = %, reduce = %, Cumulative CPU 3.86 sec
MapReduce Total cumulative CPU time: seconds msec
Ended Job = job_1528975858636_0001
MapReduce Jobs Launched:
Stage-Stage-: Map: Reduce: Cumulative CPU: 3.86 sec HDFS Read: HDFS Write: SUCCESS
Total MapReduce CPU Time Spent: seconds msec
OK
wangba F
wangwu F
tianqi M
jepson M
Time taken: 29.262 seconds, Fetched: row(s)

hive中 udf,udaf,udtf的更多相关文章

  1. hive中UDF、UDAF和UDTF使用

    Hive进行UDF开发十分简单,此处所说UDF为Temporary的function,所以需要hive版本在0.4.0以上才可以. 一.背景:Hive是基于Hadoop中的MapReduce,提供HQ ...

  2. 【转】hive中UDF、UDAF和UDTF使用

    原博文出自于: http://blog.csdn.net/liuj2511981/article/details/8523084 感谢! Hive进行UDF开发十分简单,此处所说UDF为Tempora ...

  3. [转]HIVE UDF/UDAF/UDTF的Map Reduce代码框架模板

    FROM : http://hugh-wangp.iteye.com/blog/1472371 自己写代码时候的利用到的模板   UDF步骤: 1.必须继承org.apache.hadoop.hive ...

  4. Hive 自定义函数 UDF UDAF UDTF

    1.UDF:用户定义(普通)函数,只对单行数值产生作用: 继承UDF类,添加方法 evaluate() /** * @function 自定义UDF统计最小值 * @author John * */ ...

  5. 【转】HIVE UDF UDAF UDTF 区别 使用

    原博文出自于:http://blog.csdn.net/longzilong216/article/details/23921235(暂时) 感谢! 自己写代码时候的利用到的模板   UDF步骤: 1 ...

  6. 在hive中UDF和UDAF使用说明

    Hive进行UDF开发十分简单,此处所说UDF为Temporary的function,所以需要hive版本在0.4.0以上才可以. 一.背景:Hive是基于Hadoop中的MapReduce,提供HQ ...

  7. 简述UDF/UDAF/UDTF是什么,各自解决问题及应用场景

    UDF User-Defined-Function 自定义函数 .一进一出: 背景 系统内置函数无法解决实际的业务问题,需要开发者自己编写函数实现自身的业务实现诉求. 应用场景非常多,面临的业务不同导 ...

  8. Hive中的UDF详解

    hive作为一个sql查询引擎,自带了一些基本的函数,比如count(计数),sum(求和),有时候这些基本函数满足不了我们的需求,这时候就要写hive hdf(user defined funati ...

  9. hive自定义UDF

    udf udaf udtf 使用方式 hiverc文件 1.jar包放到安装日录下或者指定目录下 2.${HIVE_HOME}/bin目录下有个.hiverc文件,它是隐藏文件. 3.把初始化语句加载 ...

随机推荐

  1. 在giuhub上演示自己的项目

    首先在github上建立项目,然后git clone; 然后切换分支到 git checkout gh-pages 最后提交代码到这个分支上,访问地址:[github用户名].github.io/[项 ...

  2. java动态代理的实现以及原理

    1.前言 之前对动态代理的技术只是表面上理解,没有形成一个体系,这里总结一下,整个动态代理的实现以及实现原理,以表述的更清楚一些. 2.动态代理的实现应用到的技术 1.动态编译技术,可以使用Java自 ...

  3. Lua脚本认知小结

    0.前言 Lua是一种脚本语言,笔者在学习cocos2dx的时候认识了这个脚本语言. 据个人了解的脚本语言最大的优势是无需编译,使用其内核可以使其跨平台运行. JavaScript,Python,Pe ...

  4. viewsate用法

    ViewState["名称"]="ssss";直接赋值取值只能在同一个页面使用, 离开页面就会失效

  5. Entity Framework——执行sql语句

    EF版本:6.0.0 EF对大量数据或多表连接一次操作耗时较大,或要求响应时间尽可能小,因此采用EF框架执行SQL语句的方案 1DbContext.Database 这个类包含了大量的操作方法,见截图 ...

  6. 匹配iPhoneX

    1.header中加一下标签 <meta name="viewport" content="width=device-width,initial-scale=1,m ...

  7. springmvc和easyui使用ajax前台后台互传数据,假删除提示警告问题。

    前台 //删除 多/单条数据 function del(cid){ var id=''; if(cid=='-1'){ if(getSelections().length > 0){ id=ge ...

  8. SVN 操作报错 “Previous operation has not finished; run 'cleanup' if it was interrupted“

    今天在 通过 SVN 合并代码的时候报了如下的错误 ”Previous operation has not finished; run 'cleanup' if it was interrupted“ ...

  9. canvas背景

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. direct path write 等待事件导致数据库hang

    同事反应十几分钟前数据库好像挂起了一会,让我排查数据库是否存在什么问题. 第一反应看当前数据库还是否有什么等待事件,结果有direct path write等待事件. 于是抓了问题时间段20分钟的AS ...