洛谷 P2730 魔板 Magic Squares 解题报告
P2730 魔板 Magic Squares
题目背景
在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:
1 2 3 4
8 7 6 5
题目描述
我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。
这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):
“A”:交换上下两行;
“B”:将最右边的一列插入最左边;
“C”:魔板中央四格作顺时针旋转。
下面是对基本状态进行操作的示范:
A: 8 7 6 5
1 2 3 4
B: 4 1 2 3
5 8 7 6
C: 1 7 2 4
8 6 3 5
对于每种可能的状态,这三种基本操作都可以使用。
你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。
输入输出格式
输入格式:
只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。
输出格式:
Line 1: 包括一个整数,表示最短操作序列的长度。
Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。
Dew的码力还是一如既往的差呢。
用广搜直接暴力,状态使用康托展开存储判重,事实上展开比较简单,而双射回去容易错,所以我只写了展开的。
Code:
#include <cstdio>
struct node
{
int sta[3][5],pre[2];
}s;
int fac[12];
int Hash(node sta)
{
int rk=0;
for(int i=1;i<=2;i++)
for(int j=1;j<=4;j++)
{
int k=(i-1)*4+j,cnt=0;
for(int i0=i;i0<=2;i0++)
for(int j0=(i0==i?j+1:1);j0<=4;j0++) cnt+=(sta.sta[i][j]>sta.sta[i0][j0]);
rk+=cnt*fac[8-k];
}
return rk;
}
void swap(int &x,int &y){int tmp=x;x=y;y=tmp;}
node q[50000];
int used[50000],l,r,ans,Ans[50000];
int main()
{
int now;
for(int i=1;i<=4;i++) scanf("%d",&s.sta[1][i]);
for(int i=4;i>=1;i--) scanf("%d",&s.sta[2][i]);
fac[0]=1;
for(int i=1;i<=10;i++) fac[i]=fac[i-1]*i;
int to=Hash(s);
for(int i=1;i<=4;i++) s.sta[1][i]=i;
for(int i=1;i<=4;i++) s.sta[2][i]=9-i;
l=1;
q[++r]=s;
while(l<=r)
{
node sta=q[l++];
node t=sta;
if(Hash(t)==to) {now=l-1;break;}
for(int i=1;i<=4;i++) swap(t.sta[1][i],t.sta[2][i]);
int h=Hash(t);
if(!used[h])
{
used[h]=1,q[++r]=t;
q[r].pre[0]=l-1,q[r].pre[1]=1;
}
t=sta;
t.sta[1][0]=t.sta[1][4];
t.sta[2][0]=t.sta[2][4];
for(int i=1;i<=2;i++)
for(int j=4;j;j--)
t.sta[i][j]=t.sta[i][j-1];
h=Hash(t);
if(!used[h])
{
used[h]=1,q[++r]=t;
q[r].pre[0]=l-1,q[r].pre[1]=2;
}
t=sta;
int tmp=t.sta[1][2];
t.sta[1][2]=t.sta[2][2];
t.sta[2][2]=t.sta[2][3];
t.sta[2][3]=t.sta[1][3];
t.sta[1][3]=tmp;
h=Hash(t);
if(!used[h])
{
used[h]=1,q[++r]=t;
q[r].pre[0]=l-1,q[r].pre[1]=3;
}
}
while(now)
{
Ans[++ans]=q[now].pre[1];
now=q[now].pre[0];
}
printf("%d\n",ans-1);
for(int i=ans;i;i--)
{
if(Ans[i]==1) printf("A");
if(Ans[i]==2) printf("B");
if(Ans[i]==3) printf("C");
}
return 0;
}
2018.8.8
洛谷 P2730 魔板 Magic Squares 解题报告的更多相关文章
- 洛谷 P2730 魔板 Magic Squares
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- [洛谷P2730] 魔板 Magic Squares
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...
- 洛谷 - P2730 - 魔板 Magic Squares - bfs
写状态转移弄了很久,老了,不记得自己的数组是怎么标号的了. #include <bits/stdc++.h> using namespace std; #define ll long lo ...
- 洛谷P2730 魔板 [广搜,字符串,STL]
题目传送门 魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有 ...
- P2730 魔板 Magic Squares
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
- P2730 魔板 Magic Squares (搜索)
题目链接 Solution 这道题,我是用 \(map\) 做的. 具体实现,我们用一个 \(string\) 类型表示任意一种情况. 可以知道,排列最多只有 \(8!\) 个. 然后就是直接的广搜了 ...
- 哈希+Bfs【P2730】 魔板 Magic Squares
没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...
- 【简●解】 LG P2730 【魔板 Magic Squares】
LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...
- [USACO3.2]魔板 Magic Squares
松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...
随机推荐
- PS 证件照换颜色
1.打开要修改的图片,然后先Ctrl+J备份一份 2.点击魔法棒,点击要换颜色的地方,如衣服,之后会出现虚线,如果自动选择的不全,可以按住Shift键自行选择区域 3.然后Shift+Fn+F5(由于 ...
- java后台接受web前台传递的数组参数
前台发送:&warning_type[]=1,2 &warning_type=1,2 后台接收:(@RequestParam(value = "param[]") ...
- 推荐:一个适合于Python新手的入门练手项目
随着人工智能的兴起,国内掀起了一股Python学习热潮,入门级编程语言,大多选择Python,有经验的程序员,也开始学习Python,正所谓是人生苦短,我用Python 有个Python入门练手项目, ...
- leetcode-回文链表
请判断一个链表是否为回文链表. 示例 1: 输入: 1->2 输出: false 示例 2: 输入: 1->2->2->1 输出: true 进阶:你能否用 O(n) 时间复杂 ...
- 【QT】常用类
官方文档 doc QWidget QWidget类是所有用户界面对象的基类. 窗口部件是用户界面的一个基本单元:它从窗口系统接收鼠标.键盘和其它事件,并且在屏幕上绘制自己. 每一个窗口部件都是矩形的, ...
- Ubuntu—安装网络调试工具
https://pan.baidu.com/s/1G6oHXp3SvcN6HMAMqTdqhA 1,在ubuntu的终端下,切换到网络调试工具所在的目录 $ cd 桌面/ #我的放在桌面上 2, ...
- Train Problem(栈的应用)
Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of studen ...
- 20172330 2017-2018-1 《Java程序设计》第七周学习总结
学号 2017-2018-1 <程序设计与数据结构>第七周学习总结 教材学习内容总结 这一章主要是对继承的学习: 继承是组织和创建类的基本技术,概念简单但影响重大,决定着面向对象软件的设计 ...
- css深入理解之 border
一 border-width不支持百分比值 1 不符合客观逻辑 2 w3成都一种约定吧 3 边框本身就像是一个包裹内容的界限 类似的还有outline,box-shadow text-shadow均不 ...
- MySQL加密算法
1.不可逆加密: PASSWORD(),ENCRYPT(,),MD5(),SHA5(). 2.可逆的加密算法: ENCODE(,) DECODE(,):加密解密字符串.该函数有两个参数:被加密或解 ...