Matching In Multiplication

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1127    Accepted Submission(s): 325

Problem Description
In the mathematical discipline of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V (that is, U and V are each independent sets) such that every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.


Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.
Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.

Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.
In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.
For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.

It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.

Output
For each test case, print a single line containing an integer, denoting the weight of the given graph. Since the answer may be very large, please print the answer modulo 998244353.
Sample Input
1
2
2 1 1 4
1 4 2 3
Sample Output
16
【题意】给你一个二分图,每一集合里的 点数量 都为n,且其中一个集合里每个点的度数都为2.然后对于每一种完美匹配,算出边权值的乘积,然后再将每一种匹配的乘积加起来,输出最后结果。
【分析】U集合里的点 度数都为二,V集合里的点度数未知,但加起来肯定为2*n,对于V集合里度数为1的点,它的匹配对象是固定的,所以我们用拓扑排序将度数为1的点全部挖出,算出乘积res。然后对于剩下 的图,假设总节点为2*m,则V集合总度数为2*m,由于此时V集合里已经,没有度数为1的点,所以V集合里点的度数都为2,这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。比如对于两个联通块,他俩的两种方案乘积分别是(a1,a2),(b1,b2),则答案为a1*b1+a1*b2+a2*b1+a2*b2,化简后为(a1+a2)*(b1+b2),最后在乘以res即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define qwer 2e18
using namespace std;
typedef long long ll;
const int N = 6e5+;
const int M = ;
const int mod = ;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,s;
int vis[N],in[N];
ll ans[];
vector<pii>edg[N];
ll topSort(){
queue<int>q;
ll ret=;
for(int i=n+;i<=n+n;i++){
if(in[i]==){
q.push(i);
vis[i]=;
}
}
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=;i<edg[u].size();i++){
int v=edg[u][i].first;
if(vis[v])continue;
if((--in[v])==)q.push(v),vis[v]=;
if(u>n)ret=(ret*1LL*edg[u][i].second)%mod;
}
}
return ret;
}
void dfs(int u,int ty,int fa){
vis[u]=;
for(int i=;i<edg[u].size();i++){
int v=edg[u][i].first;
if(v==s&&v!=fa)ans[ty]=(ans[ty]*1LL*edg[u][i].second)%mod;
if(vis[v])continue;
ans[ty]=(ans[ty]*1LL*edg[u][i].second)%mod;
dfs(v,ty^,u);
}
}
int main(){
//freopen("de.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=;i<N;i++)vis[i]=in[i]=,edg[i].clear();
for(int i=,v1,w1,v2,w2;i<=n;i++){
scanf("%d%d%d%d",&v1,&w1,&v2,&w2);
v1+=n;v2+=n;
edg[i].pb(mp(v1,w1));
edg[v1].pb(mp(i,w1));
edg[i].pb(mp(v2,w2));
edg[v2].pb(mp(i,w2));
in[i]+=;
in[v1]++;in[v2]++;
}
ll anss=topSort();
for(s=;s<=n;s++){
if(!vis[s]){
ans[]=ans[]=;
dfs(s,,);
anss=anss*((ans[]+ans[])%mod)%mod;
}
}
printf("%lld\n",anss);
}
return ;
}

HDU 6073 Matching In Multiplication(拓扑排序)的更多相关文章

  1. HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4

    /* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...

  2. HDU 6073 Matching In Multiplication(拓扑排序+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...

  3. HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑

    Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...

  4. HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  5. 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)

    题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...

  6. HDU.3342 Legal or Not (拓扑排序 TopSort)

    HDU.3342 Legal or Not (拓扑排序 TopSort) 题意分析 裸的拓扑排序 根据是否成环来判断是否合法 详解请移步 算法学习 拓扑排序(TopSort) 代码总览 #includ ...

  7. HDU.1285 确定比赛名次 (拓扑排序 TopSort)

    HDU.1285 确定比赛名次 (拓扑排序 TopSort) 题意分析 裸的拓扑排序 详解请移步 算法学习 拓扑排序(TopSort) 只不过这道的额外要求是,输出字典序最小的那组解.那么解决方案就是 ...

  8. HDU 4857 逃生 (反向拓扑排序 & 容器实现)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 逃生 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  9. ACM: HDU 1285 确定比赛名次 - 拓扑排序

     HDU 1285 确定比赛名次 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u De ...

随机推荐

  1. wiki文档书写格式

    文档基本规范 标题 标题:标明需求的简短语句.或模块名称,目录是由标题生成,一份目录结构清晰的需求文档与标题的划分是密不可分. 正文 正文:有规范格式和生效标志的正式文本,正文包括 文字.表格.图片. ...

  2. nginx 安装 lua-nginx-module

    nginx增加lua模块 yum install -y gcc g++ gcc-c++ zlib zlib-devel openssl openssl-devel pcre pcre-devel wg ...

  3. Unity下的ECS框架 Entitas简介

    最近随着守望先锋制作组在gdc上发布的一个关于ecs的talk,ecs这个架构算是得到了一定的曝光度. 在这之前,github上就一直有一个C#的ecs框架名为Entitas,截止现在已经有1300+ ...

  4. spring boot 注解说明

    Starters 可以创建自己的Starter,但名字格式不能是 spring-boot-starter-*,而是 *-spring-boot-starter.类似Maven插件的规则.   自动配置 ...

  5. kaggle比赛之悟

    一.模型与特征哪个重要? 参与Sberbank Russian Housing Market比赛,一开始使用sklearn的岭回归函数Ridge(),残差值一直是0.37左右,然后同样的特征又使用了X ...

  6. Ubuntu中启用关闭Network-manager网络设置问题! 【Server版本】

    在UbuntuServer版本中,因为只存有命令行模式,所以要想进行网络参数设置,只能通过修改/etc/network/interfaces.具体设置方法如下: (1) UbuntuServer 修改 ...

  7. centos 搭建 ss

    download:https://files.cnblogs.com/files/xishaonian/ShadowsocksR-4.7.0-win.7z 使用方法:使用root用户登录,运行以下命令 ...

  8. vue-实现倒计时功能

    JavaScript 创建一个 countdown 方法,用于计算并在控制台打印距目标时间的日.时.分.秒数,每隔一秒递归执行一次. msec 是当前时间距目标时间的毫秒数,由时间戳相减得到,我们将以 ...

  9. abp 调试

    概要 研究Abp(ASP.NET Boilerplate)框架有几个月了,从一遍遍的看官方文档,到现在看源码,一路走来学习了很多知识. 很多新手都很关心源码如何调试,我也是如此,在反复看Debuggi ...

  10. 【bzoj4695】最假女选手

    zcy的励志故事.jpg 傻逼zcy突然想立一个flag,写一个segment-tree-beats的题娱乐一下 于是他就想起了这道题. 他打算今晚写完 然后光是写他就写的头昏脑涨,还犯了询问写反这种 ...