原来决策单调性指的是这个东西...

一些DP可以写成$f_i=\max\limits_{j\lt i}g(i,j)$,设$p_i(p_i<j)$表示使得$g(i,j)$最大的$j$,如果$p_1\leq\cdots\leq p_n$,那么我们称这个DP满足决策单调性,称$p_i$为$i$的最优决策点

决策单调性可以用整体二分来做,设当前要处理$f_{l\cdots r}$且最优决策点的范围是$[h,t]$,那么我们先求出$f_{mid}$,这个直接暴力从$\left[h,\min(mid,t)\right]$转移即可,假设$mid$的最优决策点是$d$,那么我们可以递归做$(l,mid-1,h,d)$和$(mid+1,r,d,t)$,二分总共$O(\log_2n)$层,每一层最多$O(n)$,总时间复杂度$O\left(n\log_2n\right)$

这题的DP方程是$f_i=\max\{a_j+\sqrt{\left|i-j\right|}\}-a_i$,为了把绝对值去掉,我们作限制$j\lt i$,正反各做一遍取最大值即可

$f_i=\max\limits_{j\lt i}\{a_j+\sqrt{i-j}\}-a_i$

设$i$的最优决策点为$p$,那么对于$\forall k\lt p$有$a_k+\sqrt{i-k}\leq a_p+\sqrt{i-p}$

因为$\sqrt{x+1}-\sqrt x$是单调递减的,所以$\sqrt{i+1-k}-\sqrt{i-k}\leq\sqrt{i+1-p}-\sqrt{i-p}$

把它加到上面,我们得到$a_k+\sqrt{i+1-k}\leq a_p+\sqrt{i+1-p}$

这也就说明了$i+1$的最优决策点$\geq p$,也就是说这个DP满足决策单调性

#include<stdio.h>
#include<math.h>
typedef double du;
du max(du a,du b){return ceil(a>b?a:b);}
void swap(int&a,int&b){
	int c=a;
	a=b;
	b=c;
}
int a[500010];
void solve(du*f,int l,int r,int h,int t){
	if(l>r||h>t)return;
	int mid,i,d;
	du res=-2147483647.;
	mid=(l+r)>>1;
	for(i=h;i<=t&&i<=mid;i++){
		if(a[i]+sqrt(mid-i)>res){
			res=a[i]+sqrt(mid-i);
			d=i;
		}
	}
	f[mid]=res-a[mid];
	solve(f,l,mid-1,h,d);
	solve(f,mid+1,r,d,t);
}
du f[500010],g[500010];
int main(){
	int n,i;
	scanf("%d",&n);
	for(i=1;i<=n;i++)scanf("%d",a+i);
	solve(f,1,n,1,n);
	for(i=1;i<=n>>1;i++)swap(a[i],a[n-i+1]);
	solve(g,1,n,1,n);
	for(i=1;i<=n;i++)printf("%.0lf\n",max(f[i],g[n-i+1]));
}

[BZOJ2216]Lightning Conductor的更多相关文章

  1. 【BZOJ2216】Lightning Conductor(动态规划)

    [BZOJ2216]Lightning Conductor(动态规划) 题面 BZOJ,然而是权限题 洛谷 题解 \(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次 ...

  2. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  3. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  4. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  5. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  6. BZOJ2216 : [Poi2011]Lightning Conductor

    $f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...

  7. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  8. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  9. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

随机推荐

  1. Coursera课程《Machine Learning》吴恩达课堂笔记

    强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题 ...

  2. 通过编译函数库来学习GCC【转】

    转自:http://blog.csdn.net/u012365926/article/details/51446295 基本概念 什么是库 在windows平台和linux平台下都大量存在着库. 本质 ...

  3. Linux 入门记录:十四、网络基础

    一.IP地址 IP 地址是因特网上的每个网络节点在全球范围内的唯一标识符,一个 IP 地址唯一标识一个主机(严格来说是标识一个网卡接口 network interface card). 现在应用最为广 ...

  4. python实战===一句python代码搭建FTP服务

    环境搭建: python windows/linux pip install pyftpdlib  (安装失败请到这里下载:https://pypi.python.org/pypi/pyftpdlib ...

  5. python基础===discover函数介绍

    discover(start_dir,pattern='test*.py',top_level_dir=None) 找到指定目录下所有测试模块,并可递归查到子目录下的测试木块,只有匹配到的文件名才会被 ...

  6. python基础===Number

    本文转自:python之Number 1.Python number数字 Python Number 数据类型用于存储数值. 数据类型是不允许改变的,这就意味着如果改变 Number 数据类型的值,将 ...

  7. 方便大家学习的Node.js教程(一):理解Node.js

    理解Node.js 为了理解Node.js是如何工作的,首先你需要理解一些使得Javascript适用于服务器端开发的关键特性.Javascript是一门简单而又灵活的语言,这种灵活性让它能够经受住时 ...

  8. ASPxgridview 编辑列初始化事件

    在初始化编辑咧的时候,给其赋值或者是disable等等.... 贴上代码 protected void master_CellEditorInitialize(object sender, ASPxG ...

  9. C语言面试题总结(一)

    以前的记录都在电子笔记里,倒不如拿出来,有错的地方和大家交流. 1.指针操作: 如下例,设a内存地址为OX00 int a =10; int *p = &a; *a 编译错误 a表示10 *p ...

  10. Nginx事件管理机制-epoll

    epoll的最大好处在于他不会随着被监控描述符的数目的增长而导致效率极致下降. select是遍历扫描来判断每个描述符是否有事件发生,当监控的描述付越多时,时间消耗就越多,并且由于系统的限制selec ...