在机器视觉中追踪时常会用到预测算法,kalman是你一定知道的。它可以用来预测各种状态,比如说位置,速度等。关于它的理论有很多很好的文献可以参考。opencv给出了kalman filter的一个实现,而且有范例,但估计不少人对它的使用并不清楚,因为我也是其中一个。本文的应用是对二维坐标进行预测和平滑

使用方法:

1、初始化

const int stateNum=4;//状态数,包括(x,y,dx,dy)坐标及速度(每次移动的距离)

const int measureNum=2;//观测量,能看到的是坐标值,当然也可以自己计算速度,但没必要

Kalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)

转移矩阵或者说增益矩阵的值好像有点莫名其妙

  1. float A[stateNum][stateNum] ={//transition matrix
  2. 1,0,1,0,
  3. 0,1,0,1,
  4. 0,0,1,0,
  5. 0,0,0,1
  6. };

看下图就清楚了

X1=X+dx,依次类推

所以这个矩阵还是很容易却确定的,可以根据自己的实际情况定制转移矩阵

同样的方法,三维坐标的转移矩阵可以如下

  1. float A[stateNum][stateNum] ={//transition matrix
  2. 1,0,0,1,0,0,
  3. 0,1,0,0,1,0,
  4. 0,0,1,0,0,1,
  5. 0,0,0,1,0,0,
  6. 0,0,0,0,1,0,
  7. 0,0,0,0,0,1
  8. };

当然并不一定得是1和0

2.预测cvKalmanPredict,然后读出自己需要的值

3.更新观测矩阵 

4.更新CvKalman

只有第一步麻烦些。上述这几步跟代码中的序号对应

如果你在做tracking,下面的例子或许更有用些。

  1. #include <cv.h>
  2. #include <cxcore.h>
  3. #include <highgui.h>
  4. #include <cmath>
  5. #include <vector>
  6. #include <iostream>
  7. using namespace std;
  8. const int winHeight=600;
  9. const int winWidth=800;
  10. CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);
  11. //mouse event callback
  12. void mouseEvent(int event, int x, int y, int flags, void *param )
  13. {
  14. if (event==CV_EVENT_MOUSEMOVE) {
  15. mousePosition=cvPoint(x,y);
  16. }
  17. }
  18. int main (void)
  19. {
  20. //1.kalman filter setup
  21. const int stateNum=4;
  22. const int measureNum=2;
  23. CvKalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)
  24. CvMat* process_noise = cvCreateMat( stateNum, 1, CV_32FC1 );
  25. CvMat* measurement = cvCreateMat( measureNum, 1, CV_32FC1 );//measurement(x,y)
  26. CvRNG rng = cvRNG(-1);
  27. float A[stateNum][stateNum] ={//transition matrix
  28. 1,0,1,0,
  29. 0,1,0,1,
  30. 0,0,1,0,
  31. 0,0,0,1
  32. };
  33. memcpy( kalman->transition_matrix->data.fl,A,sizeof(A));
  34. cvSetIdentity(kalman->measurement_matrix,cvRealScalar(1) );
  35. cvSetIdentity(kalman->process_noise_cov,cvRealScalar(1e-5));
  36. cvSetIdentity(kalman->measurement_noise_cov,cvRealScalar(1e-1));
  37. cvSetIdentity(kalman->error_cov_post,cvRealScalar(1));
  38. //initialize post state of kalman filter at random
  39. cvRandArr(&rng,kalman->state_post,CV_RAND_UNI,cvRealScalar(0),cvRealScalar(winHeight>winWidth?winWidth:winHeight));
  40. CvFont font;
  41. cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);
  42. cvNamedWindow("kalman");
  43. cvSetMouseCallback("kalman",mouseEvent);
  44. IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);
  45. while (1){
  46. //2.kalman prediction
  47. const CvMat* prediction=cvKalmanPredict(kalman,0);
  48. CvPoint predict_pt=cvPoint((int)prediction->data.fl[0],(int)prediction->data.fl[1]);
  49. //3.update measurement
  50. measurement->data.fl[0]=(float)mousePosition.x;
  51. measurement->data.fl[1]=(float)mousePosition.y;
  52. //4.update
  53. cvKalmanCorrect( kalman, measurement );
  54. //draw
  55. cvSet(img,cvScalar(255,255,255,0));
  56. cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green
  57. cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red
  58. char buf[256];
  59. sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);
  60. cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));
  61. sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);
  62. cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));
  63. cvShowImage("kalman", img);
  64. int key=cvWaitKey(3);
  65. if (key==27){//esc
  66. break;
  67. }
  68. }
  69. cvReleaseImage(&img);
  70. cvReleaseKalman(&kalman);
  71. return 0;
  72. }

kalman filter 视频演示:

http://v.youku.com/v_show/id_XMjU4MzEyODky.html

demo snapshot:

kalman 滤波 演示与opencv代码的更多相关文章

  1. OpenCV: kalman滤波的代码段

    序言:在我的疲劳检测工程 AviTest中!显示框为320*240,使用OpenCV的kalman滤波算法,可以实现简单的锁相追踪-实现对眼球的位置锁定. 代码如下: CvPoint Wishchin ...

  2. 理解Kalman滤波的使用

    Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很 ...

  3. (二). 细说Kalman滤波:The Kalman Filter

    本文为原创文章,转载请注明出处,http://www.cnblogs.com/ycwang16/p/5999034.html 前面介绍了Bayes滤波方法,我们接下来详细说说Kalman滤波器.虽然K ...

  4. 透过表象看本质!?之三——Kalman滤波

    数据拟合能够估计出数据变化的趋势,另外一个同等重要的应用是如何利用这一趋势,预测下一时刻数据可能的值.通俗点儿说,你观察苍蝇(蚊子,蜜蜂)飞了几秒,你也许会想“它下一个时刻可能在哪儿”,“呈现出什么样 ...

  5. 快速双边滤波 附完整C代码

    很早之前写过<双边滤波算法的简易实现bilateralFilter>. 当时学习参考的代码来自cuda的样例. 相关代码可以参阅: https://github.com/johng12/c ...

  6. 终于理解kalman滤波

    2017拜拜啦,怎么过元旦呢?当然是果断呆实验室过... 应该是大二的时候首次听说kalman,一直到今天早上,我一看到其5条"黄金公式",就会找各种理由放弃,看不懂呀...但是研 ...

  7. kalman滤波

    kalman滤波原理(通俗易懂) 1. 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人 ...

  8. 目标跟踪之卡尔曼滤波---理解Kalman滤波的使用预测

    Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很 ...

  9. kalman滤波原理

    2017拜拜啦,怎么过元旦呢?当然是果断呆实验室过... 应该是大二的时候首次听说kalman,一直到今天早上,我一看到其5条“黄金公式”,就会找各种理由放弃,看不懂呀...但是研究lidar定位需要 ...

随机推荐

  1. angularJs十个面试题

    一.ng-show/ng-hide 与 ng-if的区别? 我们都知道ng-show/ng-hide实际上是通过display来进行隐藏和显示的.而ng-if实际上控制dom节点的增删除来实现的.因此 ...

  2. Spring 之通过 XML 装配 bean

    1.关于 使用传统标签还是 c- p- 命名空间定义的标签, 我的观点是能用  c- p- 命名空间定义的标签 就不用 传统标签(这样会比较简洁... 2.强依赖使用构造器注入,可选性依赖使用属性注入 ...

  3. 存储库之mongodb,redis,mysql

    一.简介 MongoDB是一款强大.灵活.且易于扩展的通用型数据库 MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性 ...

  4. spring boot应用测试框架介绍

    一.spring boot应用测试存在的问题 官方提供的测试框架spring-boot-test-starter,虽然提供了很多功能(junit.spring test.assertj.hamcres ...

  5. qt项目: error LNK2038: 检测到“_MSC_VER”的不匹配项: 值“1900”不匹配值“1800”

    error LNK2038: 检测到“_MSC_VER”的不匹配项:  值“1900”不匹配值“1800” 该错误 网上通常的解释是: 原因:由于你使用了vs2012,相比较vs2010以及之前的vs ...

  6. mysql 进阶查询(学习笔记)

    学习笔记,来源:实验楼 ,链接: https://www.shiyanlou.com/courses/9   一.日期计算: 1.要想确定每个宠物有多大,可以使用函数TIMESTAMPDIFF()计算 ...

  7. COS-2OS结构和硬件支持

    操作系统(Operating System,简称OS),是电子计算机系统中负责支撑应用程序运行环境以及用户操作环境的系统软件,同时也是计算机系统的核心与基石.它的职责常包括对硬件的直接监管.对各种计算 ...

  8. Spring_事务-注解代码

    applicationContext.xml <?xml version="1.0" encoding="UTF-8"?><beans xml ...

  9. SpringBoot2.0+ElasticSearch网盘搜索实现

    1.ES是如何实现分布式高并发全文检索 2.简单介绍ES分片Shards分片技术 3.为什么ES主分片对应的备分片不在同一台节点存放 4.索引的主分片定义好后为什么不能做修改 5.ES如何实现高可用容 ...

  10. linux service start|stop|restart

    用了这么些日子的linux/unix系统,也和别人一起合作开发了不少程序,发现高手都喜欢在命令行上操作,而且控制程序的运行偏好于使用脚本,加上参数如:start.restart.stop等. 后来自己 ...