【算法】离散化+树状数组(求逆序对)

【题解】经典,原理是统计在i之前插入的且值≤i的个数,然后答案就是i-getsum(i)

#include<cstdio>
#include<algorithm>
#include<cstring>
#define lowbit(x) x&(-x)
using namespace std;
const int maxn=;
int A[maxn],ord[maxn],a[maxn],b[maxn],n,s;
bool cmp(int x,int y)
{return a[x]<a[y];}
void insert(int x)
{
for(int i=x;i<=s;i+=lowbit(i))A[i]++;
}
int getsum(int x)
{
int ans=;
for(int i=x;i>=;i-=lowbit(i))ans+=A[i];
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
ord[i]=i;
}
sort(ord+,ord+n+,cmp);
s=;b[ord[]]=;
for(int i=;i<=n;i++)b[ord[i]]=a[ord[i]]==a[ord[i-]]?s:++s;
int ans=;
for(int i=;i<=n;i++)
{
insert(b[i]);
ans+=i-getsum(b[i]);
}
printf("%d",ans);
return ;
}

【51NOD-0】1019 逆序数的更多相关文章

  1. 51nod 1019 逆序数

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  2. 51nod 1019 逆序数(逆序数+离散化)

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是 ...

  3. 51Nod 1019 逆序数(线段树)

    题目链接:逆序数 模板题. #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a) ...

  4. (分治)51NOD 1019 逆序数

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是 ...

  5. 51Nod 1019 逆序数 (归并排序)

    #include <iostream> #include <cstring> using namespace std; ; int a[maxn]; int res[maxn] ...

  6. 51nod1019 逆序数

    1019 逆序数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为 ...

  7. nyoj117 求逆序数

    求逆序数 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中 ...

  8. POJ2299 Ultra-QuickSort(归并排序求逆序数)

    归并排序求逆序数   Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  9. 求字符数组逆序数(poj1007)

    int InversionNumber(char* s,int len) { int ans=0;  //s逆序数 int A,C,G;  //各个字母出现次数,T是最大的,无需计算T出现次数 A=C ...

随机推荐

  1. a2

    Alpha 冲刺报告 队名: 组长:吴晓晖 今天完成了哪些任务: 代码量300+,完成了百度地图API的引入. 展示GitHub当日代码/文档签入记录: 明日计划: 整理下这两个功能,然后补些bug ...

  2. Response.End方法

    文章:在try...catch语句中执行Response.End()后如何停止执行catch语句中的内容 调用Response.End()方法能保证,只输出End方法之前的内容. 调用Context. ...

  3. SQL Server 复制:事务发布(读写分离)

    一.背景 在复制的运用场景中,事务发布是使用最为广泛的,我遇到这样一个场景:在YangJiaLeClub数据库中有表.存储过程.视图.用户定义函数,需要提供给其它程序读取放入缓存,程序需要比较及时的获 ...

  4. TCP系列10—连接管理—9、syncookie、fastopen与backlog

    这部分内容涉及较多linux实现,可以跳过. 一.listen系统调用对backlog的处理 当socket处于LISTEN或者CLOSED状态时,fastopen队列的长度可以通过TCP_FASTO ...

  5. Combobox的使用,日期选择器

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  6. cacti 添加tomcat监控

    监控主机 192.168.24.69 ,以下用A表示 被监控主机 192.168.24.79,以下用B标识 一.A主机cacti中 1.导入TomcatStat中的xml模版 2.将TomcatSta ...

  7. error C2143: 语法错误 : 缺少“;”(在“类型”的前面)

    C编程老是遇到这个问题: 错误 error C2143: 语法错误 : 缺少“;”(在“类型”的前面) d:\kinectproject\ceshiglad\ceshiglad\shili.c ces ...

  8. Android 数据库升级中数据保持和导入已有数据库

    一.数据库升级: 在我们的程序中,或多或少都会涉及到数据库,使用数据库必定会涉及到数据库的升级,数据库升级带来的一些问题,如旧版本数据库的数据记录的保持,对新表的字段的添加等等一系列问题,还记得当我来 ...

  9. Android Service 生命周期

    Service概念及用途: Android中的服务,它与Activity不同,它是不能与用户交互的,不能自己启动的,运行在后台的程序,如果我们退出应用时,Service进程并没有结束,它仍然在后台运行 ...

  10. 数组分组chunk的一种写法

    lodash的_.chunk函数可以将数组按照数量分成若干组, 例如: const data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; const groupByN ...