【算法】离散化+树状数组(求逆序对)

【题解】经典,原理是统计在i之前插入的且值≤i的个数,然后答案就是i-getsum(i)

#include<cstdio>
#include<algorithm>
#include<cstring>
#define lowbit(x) x&(-x)
using namespace std;
const int maxn=;
int A[maxn],ord[maxn],a[maxn],b[maxn],n,s;
bool cmp(int x,int y)
{return a[x]<a[y];}
void insert(int x)
{
for(int i=x;i<=s;i+=lowbit(i))A[i]++;
}
int getsum(int x)
{
int ans=;
for(int i=x;i>=;i-=lowbit(i))ans+=A[i];
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
ord[i]=i;
}
sort(ord+,ord+n+,cmp);
s=;b[ord[]]=;
for(int i=;i<=n;i++)b[ord[i]]=a[ord[i]]==a[ord[i-]]?s:++s;
int ans=;
for(int i=;i<=n;i++)
{
insert(b[i]);
ans+=i-getsum(b[i]);
}
printf("%d",ans);
return ;
}

【51NOD-0】1019 逆序数的更多相关文章

  1. 51nod 1019 逆序数

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  2. 51nod 1019 逆序数(逆序数+离散化)

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是 ...

  3. 51Nod 1019 逆序数(线段树)

    题目链接:逆序数 模板题. #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a) ...

  4. (分治)51NOD 1019 逆序数

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是 ...

  5. 51Nod 1019 逆序数 (归并排序)

    #include <iostream> #include <cstring> using namespace std; ; int a[maxn]; int res[maxn] ...

  6. 51nod1019 逆序数

    1019 逆序数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为 ...

  7. nyoj117 求逆序数

    求逆序数 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中 ...

  8. POJ2299 Ultra-QuickSort(归并排序求逆序数)

    归并排序求逆序数   Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  9. 求字符数组逆序数(poj1007)

    int InversionNumber(char* s,int len) { int ans=0;  //s逆序数 int A,C,G;  //各个字母出现次数,T是最大的,无需计算T出现次数 A=C ...

随机推荐

  1. (一)Model的产生及处理

    MVC的概念其实最早可以追溯到很久很久以前,并不是WEB开发过程中所首创, 但是,MVC也适合WEB上的开发,并真正的在WEB开发领域广泛应用.MVC的第一个字母M是Model,承载着View层和Co ...

  2. 总结Canvas和SVG的区别

    参考链接: 菜鸟教程 HTML5 内联SVG 经典面试题(讨论canvas与svg的区别) Canvas SVG 通过 JavaScript 来绘制 2D 图形 是一种使用 XML 描述 2D 图形的 ...

  3. .从列表结束中删除第N个节点

    描述 给定一个链表,从列表的最后删除倒数第n个元素 例如: 给定链表:1-> 2-> 3-> 4-> 5,并且n = 2. 删除倒数第二个,链表将变为1-> 2-> ...

  4. 3ds Max学习日记(四)

      下午去实验室见了师姐,人还挺好,给我安排了任务,和3ds max没有半毛钱关系. 附上今日的劳动成果:   板子(牌匾)   简约吊灯(看上去比较单调)   高脚杯(喝酒用的)   沙发(沙发) ...

  5. 【Redis】- 总结精讲

    本文围绕以下几点进行阐述 1.为什么使用redis2.使用redis有什么缺点3.单线程的redis为什么这么快4.redis的数据类型,以及每种数据类型的使用场景5.redis的过期策略以及内存淘汰 ...

  6. linux查看资源占用情况

    在Linux中查看占用空间大文件 查看当前目录总共占的容量.而不单独列出各子项占用的容量$ du -sh查看当前目录下一级子文件和子目录占用的磁盘容量.$ du -lh --max-depth=1结果 ...

  7. 自学网络 arp_ignore/arp_announce

    1)机器上有好几个IP地址,如何让网卡只接收自己IP地址的数据包: 如何只接收自己网卡的数据包 http://www.cnblogs.com/honpey/p/8447819.html 相关的配置ar ...

  8. Kubernetes初探 :总体概述及使用示例

    Kubernetes是Google开源的容器集群管理系统.它构建于docker技术之上,为容器化的应用提供资源调度.部署运行.服务发现.扩容缩容等整一套功能,本质上可看作是基于容器技术的mini-Pa ...

  9. RT-thread内核之对象管理系统

    一.数据结构 1.对象控制块:在include/rtdef.h中定义 /** * Base structure of Kernel object */ struct rt_object { char ...

  10. 通过logger命令记录日志

    通过logger命令记录日志 logger是一个shell命令接口,可以通过该接口使用Syslog的系统日志模块,还可以从命令行直接向系统日志文件写入一行信息. ------------------- ...