大数的位数设置很坑,设成700会越界,设成800会超空间,最后设成了750居然就过了。。。。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define LL long long
using namespace std; /*
* 完全大数模板
* 输出cin>>a
* 输出a.print();
* 注意这个输入不能自动去掉前导0的,可以先读入到char数组,去掉前导0,再用构造函数。
多组数据输入输出时在循环里面定义变量BigNum,在循坏外定义有时会出现WA
大数的位数可以根据题目的要求进行更改
*/
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4
class BigNum
{
private:
int a[]; //可以控制大数的位数
int len; public:
BigNum()
{
len = ; //构造函数
memset(a, , sizeof(a));
}
BigNum(const int); //将一个int类型的变量转化成大数
BigNum(const char *); //将一个字符串类型的变量转化为大数
BigNum(const BigNum &); //拷贝构造函数
BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
friend istream &operator>>(istream &, BigNum &); //重载输入运算符
friend ostream &operator<<(ostream &, BigNum &); //重载输出运算符
BigNum operator+(const BigNum &) const; //重载加法运算符,两个大数之间的相加运算
BigNum operator-(const BigNum &) const; //重载减法运算符,两个大数之间的相减运算
BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算
BigNum operator/(const int &) const; //重载除法运算符,大数对一个整数进行相除运算
BigNum operator^(const int &) const; //大数的n次方运算
int operator%(const int &) const; //大数对一个int类型的变量进行取模运算
bool operator>(const BigNum &T) const; //大数和另一个大数的大小比较
bool operator>(const int &t) const; //大数和一个int类型的变量的大小比较
void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{
int c, d = b;
len = ;
memset(a, , sizeof(a));
while (d > MAXN)
{
c = d - (d / (MAXN + )) * (MAXN + );
d = d / (MAXN + );
a[len++] = c;
}
a[len++] = d;
}
BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数
{
int t, k, index, L, i;
memset(a, , sizeof(a));
L = strlen(s);
len = L / DLEN;
if (L % DLEN)
len++;
index = ;
for (i = L - ; i >= ; i -= DLEN)
{
t = ;
k = i - DLEN + ;
if (k < )
k = ;
for (int j = k; j <= i; j++)
t = t * + s[j] - '';
a[index++] = t;
}
}
BigNum::BigNum(const BigNum &T) : len(T.len) //拷贝构造函数
{
int i;
memset(a, , sizeof(a));
for (i = ; i < len; i++)
a[i] = T.a[i];
}
BigNum &BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算
{
int i;
len = n.len;
memset(a, , sizeof(a));
for (i = ; i < len; i++)
a[i] = n.a[i];
return *this;
}
istream &operator>>(istream &in, BigNum &b)
{
char ch[MAXSIZE * ];
int i = -;
in >> ch;
int L = strlen(ch);
int count = , sum = ;
for (i = L - ; i >= ;)
{
sum = ;
int t = ;
for (int j = ; j < && i >= ; j++, i--, t *= )
{
sum += (ch[i] - '') * t;
}
b.a[count] = sum;
count++;
}
b.len = count++;
return in;
}
ostream &operator<<(ostream &out, BigNum &b) //重载输出运算符
{
int i;
cout << b.a[b.len - ];
for (i = b.len - ; i >= ; i--)
{
printf("%04d", b.a[i]);
}
return out;
}
BigNum BigNum::operator+(const BigNum &T) const //两个大数之间的相加运算
{
BigNum t(*this);
int i, big;
big = T.len > len ? T.len : len;
for (i = ; i < big; i++)
{
t.a[i] += T.a[i];
if (t.a[i] > MAXN)
{
t.a[i + ]++;
t.a[i] -= MAXN + ;
}
}
if (t.a[big] != )
t.len = big + ;
else
t.len = big;
return t;
}
BigNum BigNum::operator-(const BigNum &T) const //两个大数之间的相减运算
{
int i, j, big;
bool flag;
BigNum t1, t2;
if (*this > T)
{
t1 = *this;
t2 = T;
flag = ;
}
else
{
t1 = T;
t2 = *this;
flag = ;
}
big = t1.len;
for (i = ; i < big; i++)
{
if (t1.a[i] < t2.a[i])
{
j = i + ;
while (t1.a[j] == )
j++;
t1.a[j--]--;
while (j > i)
t1.a[j--] += MAXN;
t1.a[i] += MAXN + - t2.a[i];
}
else
t1.a[i] -= t2.a[i];
}
t1.len = big;
while (t1.a[t1.len - ] == && t1.len > )
{
t1.len--;
big--;
}
if (flag)
t1.a[big - ] = - t1.a[big - ];
return t1;
}
BigNum BigNum::operator*(const BigNum &T) const //两个大数之间的相乘
{
BigNum ret;
int i, j, up;
int temp, temp1;
for (i = ; i < len; i++)
{
up = ;
for (j = ; j < T.len; j++)
{
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if (temp > MAXN)
{
temp1 = temp - temp / (MAXN + ) * (MAXN + );
up = temp / (MAXN + );
ret.a[i + j] = temp1;
}
else
{
up = ;
ret.a[i + j] = temp;
}
}
if (up != )
ret.a[i + j] = up;
}
ret.len = i + j;
while (ret.a[ret.len - ] == && ret.len > )
ret.len--;
return ret;
}
BigNum BigNum::operator/(const int &b) const //大数对一个整数进行相除运算
{
BigNum ret;
int i, down = ;
for (i = len - ; i >= ; i--)
{
ret.a[i] = (a[i] + down * (MAXN + )) / b;
down = a[i] + down * (MAXN + ) - ret.a[i] * b;
}
ret.len = len;
while (ret.a[ret.len - ] == && ret.len > )
ret.len--;
return ret;
}
int BigNum::operator%(const int &b) const //大数对一个 int类型的变量进行取模
{
int i, d = ;
for (i = len - ; i >= ; i--)
d = ((d * (MAXN + )) % b + a[i]) % b;
return d;
}
BigNum BigNum::operator^(const int &n) const //大数的n次方运算
{
BigNum t, ret();
int i;
if (n < )
exit(-);
if (n == )
return ;
if (n == )
return *this;
int m = n;
while (m > )
{
t = *this;
for (i = ; (i << ) <= m; i <<= )
t = t * t;
m -= i;
ret = ret * t;
if (m == )
ret = ret * (*this);
}
return ret;
}
bool BigNum::operator>(const BigNum &T) const //大数和另一个大数的大小比较
{
int ln;
if (len > T.len)
return true;
else if (len == T.len)
{
ln = len - ;
while (a[ln] == T.a[ln] && ln >= )
ln--;
if (ln >= && a[ln] > T.a[ln])
return true;
else
return false;
}
else
return false;
}
bool BigNum::operator>(const int &t) const //大数和一个int类型的变量的大小比较
{
BigNum b(t);
return *this > b;
}
void BigNum::print() //输出大数
{
int i;
printf("%d", a[len - ]);
for (i = len - ; i >= ; i--)
printf("%04d", a[i]);
} BigNum f[ + ];
int main()
{
BigNum tmp();
f[] = tmp;
f[] = tmp;
f[] = tmp;
f[] = tmp;
for (int i = ; i < ; i++)
{
f[i] = f[i - ] + f[i - ] + f[i - ] + f[i - ];
}
int x;
while (scanf("%d", &x) != EOF)
{
f[x].print();
printf("\n");
} return ;
}

hdu Hat's Fibonacci(用了kuangbin模板)的更多相关文章

  1. hdu Hat's Fibonacci

    import java.math.BigInteger; import java.util.*; public class Main { public static void main(String ...

  2. hdu 1250 Hat's Fibonacci

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Description A Fibonacci sequence ...

  3. HDU 1250 Hat's Fibonacci(大数相加)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Ot ...

  4. HDU 1250 Hat's Fibonacci (递推、大数加法、string)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  5. Hat's Fibonacci(大数加法+直接暴力)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1250 hdu1250: Hat's Fibonacci Time Limit: 2000/1000 M ...

  6. HDUOJ----1250 Hat's Fibonacci

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  7. Hat's Fibonacci(大数,好)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. hdu 5895 广义Fibonacci数列

    Mathematician QSC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  9. (二维数组 亿进制 或 滚动数组) Hat's Fibonacci hdu1250

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. 老生常谈:++a与a--区别

    a++的作用是先对a进行操作再++:a--则相反. 如: int a = 1;int b = a++; //此时先运算b=a,再a++,故b=1,a=2int c = --a; //此时先--a,再运 ...

  2. 【Leetcode】【Medium】Sqrt(x)

    Implement int sqrt(int x). Compute and return the square root of x. 解题思路1,o(log(n)): 像这种从初始遍历查找匹配的任务 ...

  3. C# 转换运算符:implicit(隐式),explicit(显示)

    //A类 class Cls1 { public string name; //构造函数 public Cls1(string name) { this.name = name; } //implic ...

  4. dll的制作

    https://blog.csdn.net/guanchanghui/article/details/1621031

  5. php安装扩展redis淌过的坑

    php安装扩展redis淌过的坑 php扩展 redis cd /usr/local/src/ wget https://github.com/nicolasff/phpredis/archive/2 ...

  6. Hyperledger Fabric 1.0 学习搭建 (一)--- 基础环境搭建

    1: 环境构建在本文中用到的宿主机环境是Centos ,版本为Centos.x86_64 7.2, 一定要用7版本以上, 要不然会安装出错. 通过Docker 容器来运行Fabric的节点,版本为v1 ...

  7. zt 李鸿章听过《彩云追月》?

    ZT 李鸿章听过<彩云追月>? 2013-05-11 09:35:52 编辑 删除 归档在 观世上之音 | 浏览 1041 次 | 评论 1 条 尝试在网上找一点有关<彩云追月> ...

  8. 使用websploit在局域网全自动渗透

    原理为 websploit调用dnsdpoof进行dns欺骗配合神器metasploit的web_autopwn模块进行渗透:特点:过程基本全自动. 终端输入websploit打开websploit: ...

  9. 在前端页面展示Markdown文件

    常我们都会在GitHub上浏览很多的readme文件,这些都是Markdown语法写成的Markdown文件,HTML中并没有用于展示Markdown文件的元素,那么为什么可以在前端展示呢? 有别于G ...

  10. servlet的使用

    Servlet是比较基础的的客户端与服务器数据交互程序,通过HttpServletRequest请求和HttpServletResponse响应,可以基本实现web程序开发. 1.Servlet基础代 ...