Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18924    Accepted Submission(s): 9579

Problem Description
Before
ACM can do anything, a budget must be prepared and the necessary
financial support obtained. The main income for this action comes from
Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some
ACM member has any small money, he takes all the coins and throws them
into a piggy-bank. You know that this process is irreversible, the coins
cannot be removed without breaking the pig. After a sufficiently long
time, there should be enough cash in the piggy-bank to pay everything
that needs to be paid.

But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!

 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.
 
Output
Print
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
题意:一个存钱罐有两个重量(单位为克),一个空的时候的重量,一个满的时候的重量,给定n组硬币,每组硬币都有它的价值和重量,每种硬币数量无穷多,求当前重量的存钱罐里面的钱最少为多少.
分析:每种物品无限多,可以分析出来是个完全背包问题.dp[i]代表钱罐重量为i时能够装的最少价值。
     状态转移方程 dp[i] = min(dp[i],dp[i-V[i]]+W[i]) 其中V[i]是正向枚举的,因为每种物品无限多.
///分析:每种物品无限多,可以分析出来是个完全背包问题.dp[i]代表钱罐重量为i时能够装的最少价值。
///状态转移方程 dp[i] = min(dp[i],dp[i-V[i]]+W[i]) 其中V[i]是正向枚举的,因为每种物品无限多.
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include <math.h>
#define N 10005
using namespace std; int dp[N];
int V[],W[];
int INF = ;
int main()
{
int tcase ;
scanf("%d",&tcase);
while(tcase--){
int E,F,n;
scanf("%d%d",&E,&F);
F-=E;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d%d",&W[i],&V[i]);
}
for(int i=;i<=F;i++) dp[i] = INF;
dp[] = ; ///初始化重量为0的背包能够装的最大价值为0
for(int i=;i<=n;i++){
for(int v=V[i];v<=F;v++){
dp[v] = min(dp[v],dp[v-V[i]]+W[i]);
}
}
if(dp[F]<INF)
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[F]);
else printf("This is impossible.\n");
}
return ;
}

hdu 1114(完全背包)的更多相关文章

  1. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  2. HDU 1114 完全背包+判断能否装满

    题意 给出一个存钱罐里的钱币重量 给出可能的n种钱币重量以及价值 求存钱罐中钱币的最小价值 若不可能另有输出 在裸的完全背包上加了一点东西 即判断这个背包能否被装满 初始化 dp[0]=0 其余的都使 ...

  3. Piggy-Bank HDU - 1114 完全背包

    #include<iostream> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; ]; s ...

  4. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  5. HDU 1114 Piggy-Bank 完全背包 dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1114 完全背包的题目,要求输出最小价值.然后一定要把给出的背包重量全部用完. 就是问一个背包为k的大小,n件物品 ...

  6. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  7. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

  8. hdu 1114 dp动规 Piggy-Bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  9. poj 1114 完全背包 dp

    如果可以每个物品拿多件,则从小到大遍历,否则从大到小遍历. G - Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO ...

随机推荐

  1. jQuery无法获取隐藏元素(display:none)宽度(width)和高度(height)的新解决方案

    用jQuery写一个通过点击左右图标来翻阅图片的小插件,写好后测试可以正常运行,但是放到Tab中后发现只有第一个Tab中的代码能够正常运行,其它全部罢工了. 用Chrome自带的开发工具一查,发现罢工 ...

  2. cas 服务端、客服端详细配置

    一.准备 1.下载官方源码 CAS-Server下载地址:https://www.apereo.org/projects/cas/download-cas CAS-Client下载地址:http:// ...

  3. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

  4. HDU 5876 Sparse Graph BFS+set删点

    Problem Description In graph theory, the complement of a graph G is a graph H on the same vertices s ...

  5. 鸽巢排序Pigeonhole sort

    原理类似桶排序,同样需要一个很大的鸽巢[桶排序里管这个叫桶,名字无所谓了] 鸽巢其实就是数组啦,数组的索引位置就表示值,该索引位置的值表示出现次数,如果全部为1次或0次那就是桶排序 例如 var pi ...

  6. java enum用法

    基本用法 enum Day { SUNDAY, MONDAY, TUESDAY, WENDSDAY, THURSDAY, FRIDAY, SATURDAY; } 枚举是常量,所以应该用大写. 枚举是对 ...

  7. 【Foreign】Weed [线段树]

    Weed Time Limit: 20 Sec  Memory Limit: 512 MB Description 从前有个栈,一开始是空的. 你写下了 m 个操作,每个操作形如 k v : 若 k ...

  8. 汕头市队赛SRM 20 T2不净的圣杯

    不净的圣杯 SRM 20 背景 作为一张BUG级别的卡,官方打算把它修改得人畜无害一些…… 虽然名字还没想好,但是能力大概是对敌方所有单位造成d点伤害,d为自己牌组中所有卡的编号的最大公约数.这无疑是 ...

  9. 发福利喽稀疏FFT

    附介绍: 四位来自麻省理工学院的研究人员蒂娜·卡塔比(Dina Katabi).海塞姆·哈桑(Haitham Hassanieh).比欧特·因迪克(Piotr Indyk)和埃里克·普里斯(Eric ...

  10. Zen Cart、Joy-Cart、Magento、ShopEX、ECshop电子商务系统比较

    1.Zen Cart 优点:历史较久,系统经过长时间充分的测试,比较成熟:免费开源便于功能二次开发:基础功能强大:安装插件简单,修改文件很少,甚至不用修改文件:应用非常广泛,插件.模块更新快,其中多为 ...