Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18924    Accepted Submission(s): 9579

Problem Description
Before
ACM can do anything, a budget must be prepared and the necessary
financial support obtained. The main income for this action comes from
Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some
ACM member has any small money, he takes all the coins and throws them
into a piggy-bank. You know that this process is irreversible, the coins
cannot be removed without breaking the pig. After a sufficiently long
time, there should be enough cash in the piggy-bank to pay everything
that needs to be paid.

But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!

 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.
 
Output
Print
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
题意:一个存钱罐有两个重量(单位为克),一个空的时候的重量,一个满的时候的重量,给定n组硬币,每组硬币都有它的价值和重量,每种硬币数量无穷多,求当前重量的存钱罐里面的钱最少为多少.
分析:每种物品无限多,可以分析出来是个完全背包问题.dp[i]代表钱罐重量为i时能够装的最少价值。
     状态转移方程 dp[i] = min(dp[i],dp[i-V[i]]+W[i]) 其中V[i]是正向枚举的,因为每种物品无限多.
///分析:每种物品无限多,可以分析出来是个完全背包问题.dp[i]代表钱罐重量为i时能够装的最少价值。
///状态转移方程 dp[i] = min(dp[i],dp[i-V[i]]+W[i]) 其中V[i]是正向枚举的,因为每种物品无限多.
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include <math.h>
#define N 10005
using namespace std; int dp[N];
int V[],W[];
int INF = ;
int main()
{
int tcase ;
scanf("%d",&tcase);
while(tcase--){
int E,F,n;
scanf("%d%d",&E,&F);
F-=E;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d%d",&W[i],&V[i]);
}
for(int i=;i<=F;i++) dp[i] = INF;
dp[] = ; ///初始化重量为0的背包能够装的最大价值为0
for(int i=;i<=n;i++){
for(int v=V[i];v<=F;v++){
dp[v] = min(dp[v],dp[v-V[i]]+W[i]);
}
}
if(dp[F]<INF)
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[F]);
else printf("This is impossible.\n");
}
return ;
}

hdu 1114(完全背包)的更多相关文章

  1. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  2. HDU 1114 完全背包+判断能否装满

    题意 给出一个存钱罐里的钱币重量 给出可能的n种钱币重量以及价值 求存钱罐中钱币的最小价值 若不可能另有输出 在裸的完全背包上加了一点东西 即判断这个背包能否被装满 初始化 dp[0]=0 其余的都使 ...

  3. Piggy-Bank HDU - 1114 完全背包

    #include<iostream> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; ]; s ...

  4. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  5. HDU 1114 Piggy-Bank 完全背包 dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1114 完全背包的题目,要求输出最小价值.然后一定要把给出的背包重量全部用完. 就是问一个背包为k的大小,n件物品 ...

  6. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  7. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

  8. hdu 1114 dp动规 Piggy-Bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  9. poj 1114 完全背包 dp

    如果可以每个物品拿多件,则从小到大遍历,否则从大到小遍历. G - Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO ...

随机推荐

  1. 【DP】【P2224】】【HNOI2001】产品加工

    传送门 Description 某加工厂有\(A\).\(B\)两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时 ...

  2. Linux之根文件系统的构建20160611

    说一下LINUX根文件系统的构建: 制作文件系统 1. 交叉编译busybox 安装:make install CONFIG_PREFIX=/work/nfs_root/fs_mini_mdev_ne ...

  3. java重写equals和hashCode方法

    一.重写equals方法 如果不重写equals,那么比较的将是对象的引用是否指向同一块内存地址,重写之后目的是为了比较两个对象的value值是否相等. 利用equals比较八大包装对象(如int,f ...

  4. win7无法登陆linux samba共享

    网上查了一下资料,总共有以下几种做法: 1.防火墙 2. Open the Run command and type "secpol.msc". Press "conti ...

  5. Kubernetes - Launch Single Node Kubernetes Cluster

    Minikube is a tool that makes it easy to run Kubernetes locally. Minikube runs a single-node Kuberne ...

  6. 【洛谷 P3187】 [HNOI2007]最小矩形覆盖 (二维凸包,旋转卡壳)

    题目链接 嗯,毒瘤题. 首先有一个结论,就是最小矩形一定有条边和凸包重合.脑补一下就好了. 然后枚举凸包的边,用旋转卡壳维护上顶点.左端点.右端点就好了. 上顶点用叉积,叉积越大三角形面积越大,对应的 ...

  7. 静态资源(JS/CSS)存储在localStorage

    一.简单了解SEO SEO由英文Search Engine Optimization缩写而来, 中文意译为“搜索引擎优化”.SEO是指从自然搜索结果获得网站流量的技术和过程. 搜索引擎不优化的网站分为 ...

  8. Linux中source命令的用法

    source命令: source命令也称为“点命令”,也就是一个点符号(.).source命令通常用于重新执行刚修改的初始化文件,使之立即生效,而不必注销并重新登录.因为linux所有的操作都会变成文 ...

  9. 史诗级Java/JavaWeb学习资源免费分享

    黑马内部视频+相关配套学习资料 Java Spring 技术栈构建前后台团购网站 Java SSM开发大众点评后端 欢迎关注微信公众号:Java面试通关手册 回复关键词: "资源分享第一波& ...

  10. go环境变量及build文件

    package main /* windows go环境设置: # 参考:https://blog.csdn.net/quicmous/article/details/80360126 GOROOT ...