Description

您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:
1.查询k在区间内的排名
2.查询区间内排名为k的值
3.修改某一位值上的数值
4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)
5.查询k在区间内的后继(后继定义为大于x,且最小的数)

Input

第一行两个数 n,m 表示长度为n的有序序列和m个操作
第二行有n个数,表示有序序列
下面有m行,opt表示操作标号
若opt=1 则为操作1,之后有三个数l,r,k 表示查询k在区间[l,r]的排名
若opt=2 则为操作2,之后有三个数l,r,k 表示查询区间[l,r]内排名为k的数
若opt=3 则为操作3,之后有两个数pos,k 表示将pos位置的数修改为k
若opt=4 则为操作4,之后有三个数l,r,k 表示查询区间[l,r]内k的前驱
若opt=5 则为操作5,之后有三个数l,r,k 表示查询区间[l,r]内k的后继

Output

对于操作1,2,4,5各输出一行,表示查询结果

Sample Input

9 6
4 2 2 1 9 4 0 1 1
2 1 4 3
3 4 10
2 1 4 3
1 2 5 9
4 3 9 5
5 2 8 5

Sample Output

2
4
3
4
9

HINT

1.n和m的数据范围:n,m<=50000

2.序列中每个数的数据范围:[0,1e8]

3.虽然原题没有,但事实上5操作的k可能为负数

Solution

板子题也没啥好写的……找个好看点的板子比如我的抄抄吧

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (3000000+100)
using namespace std; int Root[N],sz,Father[N],Son[N][];
int Cnt[N],Val[N],Size[N];
int n,m,a[N],Ans,maxn; inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} struct Splay_Tree
{
int Get(int x) { return Son[Father[x]][]==x; }
void Update(int x) { Size[x]=Size[Son[x][]]+Size[Son[x][]]+Cnt[x]; }
void New(int x) { ++sz; Size[sz]=; Val[sz]=x; Cnt[sz]=; }
void Clear(int x) { Size[x]=Father[x]=Son[x][]=Son[x][]=Cnt[x]=Val[x]=; }
int Pre(int Root) { int now=Son[Root][]; while (Son[now][]) now=Son[now][]; return now; }
int Next(int Root) { int now=Son[Root][]; while (Son[now][]) now=Son[now][]; return now; } void Rotate(int x)
{
int wh=Get(x),fa=Father[x],fafa=Father[fa];
if (fafa) Son[fafa][Son[fafa][]==fa]=x;
Father[fa]=x; Son[fa][wh]=Son[x][wh^];
if (Son[fa][wh]) Father[Son[fa][wh]]=fa;
Father[x]=fafa; Son[x][wh^]=fa;
Update(fa); Update(x);
}
void Splay(int &Root,int x)
{
for (int fa;fa=Father[x];Rotate(x))
if (Father[fa])
Rotate(Get(fa)==Get(x)?fa:x);
Root=x;
}
int Findx(int &Root,int x)
{
int now=Root;
while ()
if (x<=Size[Son[now][]])
now=Son[now][];
else
{
if (x<=Cnt[now])
{
Splay(Root,now);
return now;
}
x-=Cnt[now];
now=Son[now][];
}
}
int Find(int &Root,int x)
{
int now=Root,ans=;
while ()
{
if (!now) return ans;
if (x<Val[now])
now=Son[now][];
else
{
ans+=Size[Son[now][]];
if (Val[now]==x)
{
Splay(Root,now);
return ans;
}
ans+=Cnt[now];
now=Son[now][];
}
}
}
void Insert(int &Root,int x)
{
if (!Root) { New(x); Root=sz; return; }
int now=Root,fa=;
while ()
{
if (x==Val[now]) { ++Cnt[now]; Update(now); Splay(Root,now); return; }
fa=now; now=Son[now][x>Val[now]];
if (now==){ New(x); Father[sz]=fa; Son[fa][x>Val[fa]]=sz; Splay(Root,sz); return; }
}
}
void Delete(int &Root,int x)
{
Find(Root,x);
if (Cnt[Root]>) { Cnt[Root]--; Update(Root); return; }
if (!Son[Root][] && !Son[Root][]) { Clear(Root); Root=; return; }
if (!Son[Root][]) { Root=Son[Root][]; Clear(Father[Root]); Father[Root]=; return; }
if (!Son[Root][]) { Root=Son[Root][]; Clear(Father[Root]); Father[Root]=; return; } int oldroot=Root,pre=Pre(Root);
Splay(Root,pre);
Son[Root][]=Son[oldroot][];
Father[Son[oldroot][]]=Root;
Clear(oldroot);
Update(Root);
}
}; struct Segt_Tree
{
Splay_Tree Splay[];
void Get_rank(int node,int l,int r,int l1,int r1,int k)
{
if (l>r1 || r<l1) return;
if (l1<=l && r<=r1)
{
Ans+=Splay[node].Find(Root[node],k);
return;
}
int mid=(l+r)>>;
Get_rank(node<<,l,mid,l1,r1,k);
Get_rank(node<<|,mid+,r,l1,r1,k);
}
void Update(int node,int l,int r,int x,int k)
{
Splay[node].Delete(Root[node],a[x]);
Splay[node].Insert(Root[node],k);
if (l==r) return;
int mid=(l+r)>>;
if (x<=mid) Update(node<<,l,mid,x,k);
else Update(node<<|,mid+,r,x,k);
}
void Pre(int node,int l,int r,int l1,int r1,int k)
{
if (l>r1 || r<l1) return;
if (l1<=l && r<=r1)
{
Splay[node].Insert(Root[node],k);
int pre=Splay[node].Pre(Root[node]);
Ans=max(Ans,Val[pre]);
Splay[node].Delete(Root[node],k);
return;
}
int mid=(l+r)>>;
Pre(node<<,l,mid,l1,r1,k);
Pre(node<<|,mid+,r,l1,r1,k);
}
void Next(int node,int l,int r,int l1,int r1,int k)
{
if (l>r1 || r<l1) return;
if (l1<=l && r<=r1)
{
Splay[node].Insert(Root[node],k);
int next=Splay[node].Next(Root[node]);
Ans=min(Ans,next==?0x7fffffff:Val[next]);
Splay[node].Delete(Root[node],k);
return;
}
int mid=(l+r)>>;
Next(node<<,l,mid,l1,r1,k);
Next(node<<|,mid+,r,l1,r1,k);
}
void Ins(int node,int l,int r,int x,int k)
{
Splay[node].Insert(Root[node],k);
if (l==r) return;
int mid=(l+r)>>;
if (x<=mid) Ins(node<<,l,mid,x,k);
else Ins(node<<|,mid+,r,x,k);
}
}T; int main()
{
n=read(),m=read();
for (int i=; i<=n; ++i)
a[i]=read(),maxn=max(maxn,a[i]),T.Ins(,,n,i,a[i]);
int opt,l,r,k,pos;
for (int i=; i<=m; ++i)
{
opt=read();
switch(opt)
{
case :
{
l=read(),r=read(),k=read();
Ans=;
T.Get_rank(,,n,l,r,k);
printf("%d\n",Ans+);
break;
}
case :
{
l=read(),r=read(),k=read();
int L=,R=maxn;
while (L<R)
{
int mid=(L+R)>>;
Ans=;
T.Get_rank(,,n,l,r,mid);
if (Ans<k) L=mid+;
else R=mid;
}
printf("%d\n",L-);
break;
}
case :
{
pos=read(),k=read();
T.Update(,,n,pos,k);
a[pos]=k;
maxn=max(maxn,k);
break;
}
case :
{
l=read(),r=read(),k=read();
Ans=;
T.Pre(,,n,l,r,k);
printf("%d\n",Ans);
break;
}
case :
{
l=read(),r=read(),k=read();
Ans=0x7fffffff;
T.Next(,,n,l,r,k);
printf("%d\n",Ans);
break;
}
}
}
}

BZOJ3196:二逼平衡树(线段树套Splay)的更多相关文章

  1. 【BZOJ 3196】二逼平衡树 线段树套splay 模板题

    我写的是线段树套splay,网上很多人写的都是套treap,然而本蒟蒻并不会treap 奉上sth神犇的模板: //bzoj3196 二逼平衡树,支持修改某个点的值,查询区间第k小值,查询区间某个值排 ...

  2. BZOJ3196二逼平衡树——线段树套平衡树(treap)

    此为平衡树系列最后一道:二逼平衡树您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询 ...

  3. bzoj3196 二逼平衡树——线段树套平衡树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3196 人生中第一棵树套树! 写了一个晚上,成功卡时 9000ms+ 过了! 很要注意数组的大 ...

  4. bzoj 3196 && luogu 3380 JoyOI 1730 二逼平衡树 (线段树套Treap)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3196 题面; 3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Se ...

  5. BZOJ - 3196 Tyvj 1730 二逼平衡树 (线段树套treap)

    题目链接 区间线段树套treap,空间复杂度$O(nlogn)$,时间复杂度除了查询区间k大是$O(log^3n)$以外都是$O(log^2n)$的. (据说线段树套线段树.树状数组套线段树也能过?) ...

  6. [bzoj3196]Tyvj 1730 二逼平衡树——线段树套平衡树

    题目 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查 ...

  7. 【bzoj3196】Tyvj 1730 二逼平衡树 线段树套Treap

    题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询k在区间内的前驱(前驱定义 ...

  8. bzoj 3196二逼平衡树 线段树套平衡树

    比较裸的树套树,对于区间K值bz上有一道裸题,详见题解http://www.cnblogs.com/BLADEVIL/p/3455336.html(其实题解也不是很详细) //By BLADEVIL ...

  9. [bzoj3196][Tyvj 1730][二逼平衡树] (线段树套treap)

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在 ...

随机推荐

  1. 公司管理系列--80% of Your Culture is Your Founder(FaceBook)

    80% of Your Culture is Your Founder     When Molly Graham joined Facebook in 2008, the company still ...

  2. .netCore2.0 WebApi 传递form表单

    随着it的技术发展,目前越来越多的项目采用前后端分离的开发模式,通过webapi提供接口数据来进行交互 最近项目用的是.netCore WebApi,在最近的项目使用中发现一些问题,进行记录.个人简介 ...

  3. UML关系

    UML关系详解 1.关联关系(association) 连接模型元素及链接实例,用一条实线来表示 2.依赖关系(dependency) 表示一个元素以某种方式依赖于另一个元素,用一条虚线加箭头来表示 ...

  4. Centos 从零开始 (一)

    因为本人也是刚接触 centos 24k纯小白, 所以是从零开始的攻略的 ,可能技术层次理解的不是很深.但这些东西都是无限的测试,之后一步步可行的. 同时我遇到的问题也会不断的刷新在我的微博上. 一. ...

  5. Azure Java Libraries 入门

    本指南演示了以下 Azure Java Libraries 的用法,包括设置认证.创建并使用 Azure 存储.创建并使用 Azure SQL 数据库.部署虚拟机.从 GitHub 部署 Azure ...

  6. 在 Azure 上创建和链接 MySQL 数据库

    本快速入门介绍了如何使用 Azure 门户创建并连接 MySQL 数据库.在本教程中完成的所有操作均符合 1 元试用条件. 开始之前如果您还没有 Azure 账户,可以申请 1 元试用账户 步骤1:创 ...

  7. Java基础(10)——小结与填坑

    前面都写了9篇啦,虽然断断续续发了半个月,写着写着会发现每篇中都有些比较重要的地方没有讲到~这篇还是需要填一填目前我已发现的坑了~ 一. 小结 Java编译命令 javac.运行命令java java ...

  8. javaweb之jsp的九个隐含对象与基本语法

    1.在页面上可以不用声明直接使用的对象称为jsp页面的隐含对象.使用<% %>编写的java代码在_jspService方法中,如下: public void _jspService(fi ...

  9. Coherence 简介

    Coherence是Oracle为了建立一种高可靠和高扩展集群计算的一个关键部件.   典型的使用Coherence的架构图是: Coherence被放在应用服务器和数据库服务器之间,从而解决通常应用 ...

  10. 搭建Jquery+SpringMVC+Spring+Hibernate+MySQL平台

    一. 开发环境 1. 点击此查看并下载需要的 Eclipse IDE for Java EE Developers 开发工具,依赖于java,推荐选用32位   2. 点击此查看并下载需要的 MySQ ...