不想调了

#include <bits/stdc++.h>

const int N = 1e5 + ;

#define LL long long
#define gc getchar() int fjs;
struct Node {
LL xy, x, y, x_2, lenst, lens, lent, lentt;
LL S_2, T_2/*用于 2 操作*/, S_1, T_1/*用于 3 操作*/;
bool flag1/*用于 2 操作*/, flag2/*用于 3 操作*/;
int size;
int l, r;
};
Node T[N << ];
int impx[N], impy[N]; Node operator + (const Node &a, const Node &b) {
Node ret;
ret.x = a.x + b.x;
ret.y = a.y + b.y;
ret.xy = a.xy + b.xy;
ret.x_2 = a.x_2 + b.x_2;
ret.size = a.size + b.size;
return ret;
} int n, Ty, Len; inline LL read() {
LL x = , f = ; char c = gc;
while(c < '' || c > '') {if(c == '-') f = -; c = gc;}
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x * f;
} #define lson jd << 1
#define rson jd << 1 | 1 void Build_tree(int l, int r, int jd) {
T[jd].size = (r - l + ); T[jd].l = l; T[jd].r = r;
if(l == r) {
int x_ = impx[l], y_ = impy[l];
T[jd].x = x_;
T[jd].y = y_;
T[jd].xy = x_ * y_;
T[jd].x_2 = x_ * x_;
return ;
}
int mid = (l + r) >> ;
Build_tree(l, mid, lson);
Build_tree(mid + , r, rson);
T[jd] = T[lson] + T[rson];
} void Clear_1(int jd) {
T[jd].flag1 = T[jd].lenst = T[jd].lens = T[jd].lent = T[jd].lentt = ;
T[jd].S_1 = T[jd].T_1 = ;
} void Clear_2(int jd) {
T[jd].flag2 = ;
T[jd].S_2 = T[jd].T_2 = ;
} void Down_1(int jd) {
T[lson].flag1 = T[rson].flag1 = ++ fjs;
T[lson].S_1 += T[jd].S_1;
T[rson].S_1 += T[jd].S_1;
T[lson].T_1 += T[jd].T_1;
T[rson].T_1 += T[jd].T_1;
T[lson].lenst += T[jd].lenst;
T[rson].lenst += T[jd].lenst;
T[lson].lens += T[jd].lens;
T[rson].lens += T[jd].lens;
T[lson].lent += T[jd].lent;
T[rson].lent += T[jd].lent;
T[lson].lentt += T[jd].lentt;
T[rson].lentt += T[jd].lentt;
int s = T[jd].S_1, t = T[jd].T_1;
T[lson].xy += (t * T[lson].x + s * T[lson].y + T[jd].lenst);
T[lson].x_2 += ( * t * T[lson].x + T[jd].lentt);
T[lson].x += T[jd].lens;
T[lson].y += T[jd].lent;
T[rson].xy += (t * T[rson].x + s * T[rson].y + T[jd].lenst);
T[rson].x_2 += ( * t * T[rson].x + T[jd].lentt);
T[rson].x += T[jd].lens;
T[rson].y += T[jd].lent;
Clear_1(jd);
} void Work_1(int, int, int, int, int, int, int); void Down_2(int jd) {
T[lson].flag2 = T[rson].flag2 = ++ fjs;
T[lson].S_2 = T[rson].S_2 = T[jd].S_2;
T[lson].T_2 = T[rson].T_2 = T[jd].T_2;
int l, r;
l = T[lson].l, r = T[lson].r;
T[lson].xy = T[lson].x_2 = (r * (r + ) * ( * r + ) / ) - (l * (l - ) * ( * l - )) / ;
T[lson].x = T[lson].y = (l + r) / * (r - l + );
Work_1(, n, , l, r, T[jd].S_2, T[jd].T_2);
l = T[rson].l, r = T[rson].r;
T[rson].xy = T[rson].x_2 = (r * (r + ) * ( * r + ) / ) - (l * (l - ) * ( * l - )) / ;
T[rson].x = T[rson].y = (l + r) / * (r - l + );
Work_1(, n, , l, r, T[jd].S_2, T[jd].T_2);
Clear_2(jd);
} void Work_1(int l, int r, int jd, int x, int y, int s, int t) {
if(x <= l && r <= y) {
T[jd].flag1 = ++ fjs;
T[jd].S_1 = s;
T[jd].T_1 = s;
T[jd].xy += (t * T[jd].x + s * T[jd].y + Len * s * t);
T[jd].x_2 += ( * t * T[jd].x + Len * t * t);
T[jd].x += Len * s;
T[jd].y += Len * t;
T[jd].lenst += Len * s * t;
T[jd].lens += Len * s;
T[jd].lent += Len * t;
T[jd].lentt += Len * t * t;
return ;
}
if(T[jd].flag2 > T[jd].flag1) Down_1(jd), Down_2(jd);
else Down_2(jd), Down_1(jd);
int mid = (l + r) >> ;
if(x <= mid) Work_1(l, mid, lson, x, y, s, t);
if(y > mid) Work_1(mid + , r, rson, x, y, s, t);
T[jd] = T[lson] + T[rson];
} void Work_2(int l, int r, int jd, int x, int y, int s, int t) {
if(x <= l && r <= y) {
T[jd].flag2 = ++ fjs;
T[jd].S_2 = s;
T[jd].T_2 = t;
T[jd].xy = T[jd].x_2 = (r * (r + ) * ( * r + )) / - (l * (l - ) * ( * l - )) / ;
T[jd].x = T[jd].y = (l + r) / * (r - l + );
Work_1(, n, , l, r, s, t);
return ;
}
if(T[jd].flag2 > T[jd].flag1) Down_1(jd), Down_2(jd);
else Down_2(jd), Down_1(jd);
int mid = (l + r) >> ;
if(x <= mid) Work_2(l, mid, lson, x, y, s, t);
if(y > mid) Work_2(mid + , r, rson, x, y, s, t);
T[jd] = T[lson] + T[rson];
} int Sec_A_xy(int l, int r, int jd, int x, int y) {
if(x <= l && r <= y) return T[jd].xy;
if(T[jd].flag2 > T[jd].flag1) Down_1(jd), Down_2(jd);
else Down_2(jd), Down_1(jd);
int mid = (l + r) >> ;
if(y <= mid) return Sec_A_xy(l, mid, lson, x, y);
else if(x > mid) return Sec_A_xy(mid + , r, rson, x, y);
else return Sec_A_xy(l, mid, lson, x, y) + Sec_A_xy(mid + , r, rson, x, y);
} int Sec_A_x(int l, int r, int jd, int x, int y) {
if(x <= l && r <= y) return T[jd].x;
if(T[jd].flag2 > T[jd].flag1) Down_1(jd), Down_2(jd);
else Down_2(jd), Down_1(jd);
int mid = (l + r) >> ;
if(y <= mid) return Sec_A_x(l, mid, lson, x, y);
else if(x > mid) return Sec_A_x(mid + , r, rson, x, y);
else return Sec_A_x(l, mid, lson, x, y) + Sec_A_x(mid + , r, rson, x, y);
} int Sec_A_y(int l, int r, int jd, int x, int y) {
if(x <= l && r <= y) return T[jd].y;
if(T[jd].flag2 > T[jd].flag1) Down_1(jd), Down_2(jd);
else Down_2(jd), Down_1(jd);
int mid = (l + r) >> ;
if(y <= mid) return Sec_A_y(l, mid, lson, x, y);
else if(x > mid) return Sec_A_y(mid + , r, rson, x, y);
else return Sec_A_y(l, mid, lson, x, y) + Sec_A_y(mid + , r, rson, x, y);
} int Sec_A_x_2(int l, int r, int jd, int x, int y) {
if(x <= l && r <= y) return T[jd].x_2;
if(T[jd].flag2 > T[jd].flag1) Down_1(jd), Down_2(jd);
else Down_2(jd), Down_1(jd);
int mid = (l + r) >> ;
if(y <= mid) return Sec_A_x_2(l, mid, lson, x, y);
else if(x > mid) return Sec_A_x_2(mid + , r, rson, x, y);
else return Sec_A_x_2(l, mid, lson, x, y) + Sec_A_x_2(mid + , r, rson, x, y);
} int main() {
freopen("gg.in", "r", stdin);
n = read(); Ty = read();
for(int i = ; i <= n; i ++) impx[i] = read();
for(int i = ; i <= n; i ++) impy[i] = read();
Build_tree(, n, );
for(; Ty; Ty --) {
int opt = read(), l = read(), r = read(); Len = (r - l + );
if(opt == ) {
double a = Sec_A_xy(, n, , l, r) * 1.0;
double b = Sec_A_x(, n, , l, r) * 1.0;
double c = Sec_A_y(, n, , l, r) * 1.0;
double d = Sec_A_x_2(, n, , l, r) * 1.0;
double Ans = (a - b * c / (double)Len) / (double)(1.0 * d - 1.0 * b * b / (double)Len);
printf("%.10lf\n", Ans);
continue ;
}
int s = read(), t = read();
if(opt == ) Work_1(, n, , l, r, s, t);
else if(opt == ) Work_2(, n, , l, r, s, t);
}
return ;
}

[Luogu] 相关分析的更多相关文章

  1. [题目] Luogu P3707 [SDOI2017]相关分析

    参考资料:[Luogu 3707] SDOI2017 相关分析 P3707 [SDOI2017]相关分析 TFRAC FRAC DFRAC \(\tfrac{\sum}{1}\) \(\frac{\s ...

  2. [Luogu 3707] SDOI2017 相关分析

    [Luogu 3707] SDOI2017 相关分析 前言 Capella 和 Frank 一样爱好天文学. 她常在冬季的夜晚,若有所思地望着东北方上空的五边形中,最为耀眼的一个顶点. 那一抹金黄曾带 ...

  3. luogu P3707 [SDOI2017]相关分析

    传送门 对于题目要求的东西,考虑拆开懒得拆了 ,可以发现有\(\sum x\sum y\sum x^2\sum xy\)四个变量影响最终结果,考虑维护这些值 下面记\(l,r\)为区间两端点 首先是区 ...

  4. 多视图学习利器----CCA(典型相关分析)及MATLAB实现

    Hello,我是你们人见人爱花见花开的小花.又和大家见面了,今天我们来聊一聊多视图学习利器------CCA. 一 典型相关分析的基本思想 当我们研究两个变量x和y之间的相关关系的时候,相关系数(相关 ...

  5. SPSS数据分析—基于最优尺度变换的典型相关分析

    传统的典型相关分析只能考虑变量之间的线性相关情况,且必须为连续变量,而我们依然可以使用最优尺度变换来拓展其应用范围,使其可以分析非线性相关.数据为分类数据等情况,并且不再仅限于两个变量间的分析, 虽然 ...

  6. SPSS数据分析—典型相关分析

    我们已经知道,两个随机变量间的相关关系可以用简单相关系数表示,一个随机变量和多个随机变量的相关关系可以用复相关系数表示,而如果需要研究多个随机变量和多个随机变量间的相关关系,则需要使用典型相关分析. ...

  7. Luogu 魔法学院杯-第二弹(萌新的第一法blog)

    虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> ...

  8. luogu p1268 树的重量——构造,真正考验编程能力

    题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...

  9. SPSS数据分析—相关分析

    相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以. 相关系数有一些需要注 ...

随机推荐

  1. python学习-7 条件语句 while循环 + 练习题

    1.死循环 while 1 == 1: print('ok') 结果是一直循环 2.循环 count = 0 while count < 10: print(count) count = cou ...

  2. Docker学习+遇坑笔记

    基础命令: 1.Docker启动:docker-machine start default 2.Docker关闭:  docker-machine stop default 3.查看当前运行的Dock ...

  3. 怎样快捷获取网页的window对象

    使用document.defaultView; document.defaultView === window 注意: 1. 如果当前文档不属于window对象, 则返回null; 2. docume ...

  4. Java多线程(十):BlockingQueue实现生产者消费者模型

    BlockingQueue BlockingQueue.解决了多线程中,如何高效安全"传输"数据的问题.程序员无需关心什么时候阻塞线程,什么时候唤醒线程,该唤醒哪个线程. 方法介绍 ...

  5. JS基础_函数的返回值

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  6. javaIO——AutoCloseable 小试

    前面在 IO 概述篇提到过,AutoCloseable 接口类会自动调用 close() 方法,那究竟具体怎么写呢?以及发生异常情况下或者多个资源是不是都能自动调用呢?我们来写一个简单的类测试一下就知 ...

  7. html与css注意事项及小知识点

    html 常用的html特殊符号: 空格:&npsd: 版权所有符号:&copy: 注册商标符号:&reg: 有两个标签容器:<span>和<div> ...

  8. vue网络不好时不间断请求

    配置默认参数 const { apiConfig: { timeout, retry, retryDelay } } = config; if(timeout) axios.defaults.time ...

  9. WinPE基础知识之导出表

    // 导出的东西包括函数(变量.类)地址,序号,函数(变量.类)名 typedef struct _IMAGE_EXPORT_DIRECTORY { DWORD Characteristics; // ...

  10. axios替换jquery的ajax

    <script src="https://cdn.bootcss.com/jquery/3.4.1/jquery.js"></script> <scr ...