个人感觉题解的复杂度很玄,参不透,有没有大佬讲解一下- -

/*
HDU 6102 - GCDispower [ 数论,树状数组] | 2017 Multi-University Training Contest 6
题意:
给定排列 a[N], M 组 L,R
求解 ∑ [ L <= i < j < k <= R ] [ GCD(a[i], a[j]) == a[k] ] * a[k]
限制:N, M <= 1e5
分析:
数论角度一般考虑枚举 k,由于是区间询问,且贡献有可加性,考虑对每个L,将[L, R-1] 推到 [L, R]
故对于每一个R, 枚举 a[R] 倍数 a[i] (i < R)
再对每一个 a[i] , 求得满足 i < j < R && GCD(a[i], a[j]) == a[R] 的个数
即 GCD(a[i]/a[R], a[j]/a[R]) == 1 的个数
此时对于 L ∈ [1,i-1] 的区间,贡献 = 所得个数 * a[R] , 这部分用区间更新可以完成 求 GCD(a[i]/a[R], a[j]/a[R]) == 1 的 j 的个数,用容斥原理
a[j]是a[R]的倍数的总个数 - a[j]与a[i]不互质的个数
= a[j]是a[R]的倍数的总个数 - a[j] 是 a[i] 的 1个质因子之积的倍数的个数
+ a[j] 是 a[i] 的 2个质因子之积的倍数的个数
...
+ (-1)^k * a[j] 是 a[i] 的 k个质因子之积的倍数的个数
所以预处理每个数所有质因子之积,然后容斥的参数 μ = -1^(k) 可以用莫比乌斯函数
具体处理时,可以维护每个质因子之积的倍数,每处理一个 a[i] , 就将它的每个质因子之积的倍数个数+1 复杂度:
预处理 O(n+n^1.5)
枚举 R 和 a[i] 均摊 O(nlog(n)), 枚举 a[i] 的因子容斥 O(n^0.5)
区间查询,更新 O(log(n))
总复杂度 : O(n + n^1.5 + T * n * log(n)*(n^0.5 + log(n))) 不过由于枚举因子时枚举的是非完全平方数,不足n^0.5,可能优化下来就 n*log(n)^2 了(???)
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 100005;
bool notp[N];
int prime[N], pnum, mu[N];
vector<int> fac[N];
void Mobius() {
memset(notp, 0, sizeof(notp));
mu[1] = 1;
for (int i = 2; i < N; i++) {
if (!notp[i]) prime[++pnum] = i, mu[i] = -1;
for (int j = 1; prime[j]*i < N; j++) {
notp[prime[j]*i] = 1;
if (i%prime[j] == 0) {
mu[prime[j]*i] = 0;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
for (int i = 1; i < N; i++)
for (int j = 1; j*j <= i; j++) {
if (j*j == i && mu[j]) fac[i].push_back(j);
else if (i%j == 0) {
if (mu[j]) fac[i].push_back(j);
if (mu[i/j]) fac[i].push_back(i/j);
}
}
}
int t, n, m, a[N], vis[N];
struct Query {
int l, id;
};
vector<Query> Q[N];
LL ans[N];
LL c[N];
void modify(int x, int num) {
if (x == 0) return;
while (x <= n) c[x] += num, x += x&-x;
}
LL sum(int x){
LL s = 0;
while (x) s += c[x], x -= x&-x;
return s;
}
int cnt[N];
void addCnt(int x) {
for (auto& y : fac[x]) cnt[y]++;
}
void solve(int l, int x, int k)
{
int num = 0;
for (auto& y : fac[x])
num += mu[y] * cnt[y];
modify(1, k*num);
modify(l+1, -k*num);
addCnt(x);
}
vector<int> mul;
bool cmp(int a, int b) {
return a > b;
}
void init() {
memset(vis, 0, sizeof(vis));
memset(cnt, 0, sizeof(cnt));
memset(c, 0, sizeof(c));
for (int i = 0; i < N; i++) Q[i].clear();
}
int main()
{
Mobius();
scanf("%d", &t);
while (t--)
{
init();
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= m; i++)
{
int l, r; scanf("%d%d", &l, &r);
Q[r].push_back(Query{l, i});
}
for (int i = 1; i <= n; i++)
{
mul.clear();
for (int j = 2*a[i]; j <= n; j += a[i])
if (vis[j]) mul.push_back(vis[j]);
sort(mul.begin(), mul.end(), cmp);
for (auto & l : mul) solve(l, a[l]/a[i], a[i]);
for (int j = 0; j <= n/a[i]; j++) cnt[j] = 0;
vis[a[i]] = i;
for (auto& x : Q[i]) ans[x.id] = sum(x.l);
}
for (int i = 1; i <= m; i++) printf("%lld\n", ans[i]);
}
}

HDU 6102 - GCDispower | 2017 Multi-University Training Contest 6的更多相关文章

  1. hdu 4930 Fighting the Landlords--2014 Multi-University Training Contest 6

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4930 Fighting the Landlords Time Limit: 2000/1000 MS ...

  2. HDU 6168 - Numbers | 2017 ZJUT Multi-University Training 9

    /* HDU 6168 - Numbers [ 思维 ] | 2017 ZJUT Multi-University Training 9 题意: .... 分析: 全放入multiset 从小到大,慢 ...

  3. HDU 5726 GCD (2016 Multi-University Training Contest 1)

      Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Description Give y ...

  4. HDU 5360 Hiking(优先队列)2015 Multi-University Training Contest 6

    Hiking Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total S ...

  5. hdu 6394 Tree (2018 Multi-University Training Contest 7 1009) (树分块+倍增)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=6394 思路:用dfs序处理下树,在用分块,我们只需要维护当前这个点要跳出这个块需要的步数和他跳出这个块去 ...

  6. hdu 6102 GCDispower

    多校6 GCDispower(容斥) 题意: 给一个长度为\(n\)的排列 给q组询问 每次查询\(L,R\)内的答案 \(\sum_{i=L}^{R}\sum_{j=i+1}^{R}\sum_{k= ...

  7. HDU 4951 Multiplication table(2014 Multi-University Training Contest 8)

    思路   如果进制为p    那么当x<p时 (p-1)*(p-x)=(p-(x+1))  *p +x     因为x<p  所以没有进位  所以高位上的数字为    p-(x+1). 根 ...

  8. HDU 4938 Seeing People(2014 Multi-University Training Contest 7)

    思路:根据出发时间把点往速度反方向移动 t*v的 的距离这样就可以当成 全部点一起出发,再把y轴上的点固定不动相当于x轴的点向(-v2,v1)方向移动 .可以把所有点映射到x轴上进行统计即可(要记住同 ...

  9. HDU 4937 Lucky Number(2014 Multi-University Training Contest 7)

    思路:先枚举  a*bas +b = n  求出 bas 在sqrt(n)到n的  (bas>a&&bas>b) 再枚举  a*bas*bas+b*bas+c =n  求出 ...

随机推荐

  1. laravel_Supervisor队列

    Queue 1. 队列驱动 //数据库驱动,修改.env的QUEUE_DRIVER QUEUE_DRIVER=database 1. 数据库表 php artisan queue:table php ...

  2. 微信小程序 基本介绍及组件

    创建项目 微信开发工具深入介绍 https://developers.weixin.qq.com/miniprogram/dev/devtools/devtools.html 基本项目目录 1. 配置 ...

  3. k8s认证及serviceAccount、userAccount

    1.概述 用kubectl向apiserver发起的命令,采用的是http方式,K8s支持多版本并存. kubectl的认证信息存储在~/.kube/config,所以用curl无法直接获取apis中 ...

  4. Idea 快捷生成方法(待完善)

    1.System.out.println() 输入sout,按下enter键,生成System.out.println()方法. sout--->soutv=System.out.println ...

  5. 怎样创建一个独立于当前文档的新的Document对象

    使用: document.implementation. 如下所示, 新创建的Document对象可以正常使用相关属性和方法, 然后将它的根节点与当前文档的根节点做一个替换. var doc = do ...

  6. Spring ——获取IOC容器时,构造方法、set方法、类方法执行顺序

    1,首先,我们在ApplicationContext.xml中会写下下面类的标示: <bean id="helloword" class="com.xt.frist ...

  7. 电脑无法上网,DNS出现fec0:0:0:ffff::1%1问题

    具体描述:qq,微信可用网,但其他不能用. 一.win+r 输入cmd 打开命令行:ipconfig /all 查看DNS 二.打开文本编辑器,输入如下文本: @Echo onpushd\window ...

  8. [转载]Java序列化与反序列化

    [转载]Java序列化与反序列化 来源: https://www.cnblogs.com/anitinaj/p/9253921.html 序列化和反序列化作为Java里一个较为基础的知识点,那你能说一 ...

  9. Arcgis for js加载百度地图

    看转:https://blog.csdn.net/qq_41046162/article/details/80248281 通过学习了一段时间的arcgis for js,让我来讲一下如何在arcgi ...

  10. h5嵌套iframe实时传参(适用vue)

    今天看到一个同事研究给iframe传参,由于好奇,我自己也写了个demo,说起来其实也挺简单的,但是在此之前没有用过,便想记录一下 其中主要用到的是postMessage 在页面中引入一个iframe ...