题目描述:对于一个长度为\(n\)的序列,\(m\)次询问\(l,r,p\),计算\([l,r]\)的所有子序列的不同数之和\(\mathrm{mod} \ p\)。

数据范围:\(n,m,a_i\leq 10^5,p\leq 10^9\)

来做做Ynoi中相对简单的题目。。。

首先我们考虑每个数的贡献,如果它出现了\(k\)次,那么会在\(2^{r-l+1}-2^{r-l+1-k}\)个子序列中出现。所以维护\(s[k]\)表示所有出现\(k\)次的数之和,而且\(s[k]\)中不为0的只有\(\sqrt{n}\)个。

所以使用莫队,维护\(s[k]\)并使用hash表维护\(s[k]\)中不为0的个数,并使用光速幂预处理\(2\)的幂次,然后可以\(O(\sqrt{n})\)计算了,时间复杂度\(O((n+m)\sqrt{n})\)。

如果你就这样写了,很容易被卡常,但是根据lxl的数据,hash表可以只维护出现次数\(>\sqrt{n}\)的,然后\([1,\sqrt{n}]\)的直接遍历,这样常数就会小很多。

#include<bits/stdc++.h>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = 100003, mod = 998244353;
inline int kasumi(int a, int b){
int res = 1;
while(b){
if(b & 1) res = (LL) res * a % mod;
a = (LL) a * a % mod; b >>= 1;
}
return res;
}
int n, m, inv[N], root[N << 2], val[N * 350], ls[N * 350], rs[N * 350], cnt;
inline int Add(int a, int b){return (a + b >= mod) ? (a + b - mod) : (a + b);}
inline int Sub(int a, int b){return (a < b) ? (a + mod - b) : (a - b);}
inline int add(int a, int b){return Add((LL) a * Sub(1, b) % mod, (LL) b * Sub(1, a) % mod);}
inline void change(int &x, int L, int R, int l, int r, int v){
if(!x) x = ++ cnt;
if(l <= L && R <= r){val[x] = add(val[x], v); return;}
int mid = L + R >> 1;
if(l <= mid) change(ls[x], L, mid, l, r, v);
if(mid < r) change(rs[x], mid + 1, R, l, r, v);
}
inline int query(int x, int L, int R, int p){
if(!x) return 0;
if(L == R) return val[x];
int mid = L + R >> 1;
if(p <= mid) return add(val[x], query(ls[x], L, mid, p));
else return add(val[x], query(rs[x], mid + 1, R, p));
}
inline void change(int x, int L, int R, int l1, int r1, int l2, int r2, int v){
if(l1 <= L && R <= r1){change(root[x], 1, n, l2, r2, v); return;}
int mid = L + R >> 1;
if(l1 <= mid) change(x << 1, L, mid, l1, r1, l2, r2, v);
if(mid < r1) change(x << 1 | 1, mid + 1, R, l1, r1, l2, r2, v);
}
inline int query(int x, int L, int R, int p1, int p2){
if(L == R) return query(root[x], 1, n, p2);
int mid = L + R >> 1;
if(p1 <= mid) return add(query(root[x], 1, n, p2), query(x << 1, L, mid, p1, p2));
else return add(query(root[x], 1, n, p2), query(x << 1 | 1, mid + 1, R, p1, p2));
}
int main(){
scanf("%d%d", &n, &m);
for(Rint i = 1;i <= n;i ++) inv[i] = kasumi(i, mod - 2);
while(m --){
int opt, l, r;
scanf("%d%d%d", &opt, &l, &r);
if(opt == 1){
if(l > 1){
change(root[0], 1, n, 1, l - 1, 1);
change(1, 1, n, 1, l - 1, l, r, inv[r - l + 1]);
}
if(r < n){
change(root[0], 1, n, r + 1, n, 1);
change(1, 1, n, l, r, r + 1, n, inv[r - l + 1]);
}
if(l < r) change(1, 1, n, l, r, l, r, 2ll * inv[r - l + 1] % mod);
change(root[0], 1, n, l, r, Sub(1, inv[r - l + 1]));
} else if(l == 1) printf("%d\n", Sub(1, query(root[0], 1, n, r)));
else printf("%d\n", Sub(1, query(1, 1, n, l - 1, r)));
}
}

Luogu5072 [Ynoi2015]盼君勿忘 【莫队】的更多相关文章

  1. 洛谷P5072 [Ynoi2015]盼君勿忘 [莫队]

    传送门 辣鸡卡常题目浪费我一下午-- 思路 显然是一道莫队. 假设区间长度为\(len\),\(x\)的出现次数为\(k\),那么\(x\)的贡献就是\(x(2^{len-k}(2^k-1))\),即 ...

  2. [Ynoi2015]盼君勿忘

    题目大意: 给定一个序列,每次查询一个区间\([l,r]\)中所有子序列分别去重后的和\(\bmod p\)(每次询问模数不同). 解题思路: 在太阳西斜的这个世界里,置身天上之森.等这场战争结束之后 ...

  3. 【洛谷5072】[Ynoi2015] 盼君勿忘(莫队)

    点此看题面 大致题意: 一个序列,每次询问一个区间\([l,r]\)并给出一个模数\(p\),求模\(p\)意义下区间\([l,r]\)内所有子序列去重后值的和. 题意转化 原来的题意看起来似乎很棘手 ...

  4. 【题解】Luogu P5072 [Ynoi2015]盼君勿忘

    众所周知lxl是个毒瘤,Ynoi道道都是神仙题,题面好评 原题传送门 一看这题没有修改操作就知道这是莫队题 我博客里对莫队的简单介绍 既然是莫队,我们就要考虑每多一个数或少一个数对答案的贡献是什么 假 ...

  5. P5072 [Ynoi2015]盼君勿忘

    传送门 一开始理解错题意了--还以为是两个子序列相同的话只算一次--结果是子序列里相同的元素只算一次-- 对于一个区间\([l,r]\),设其中\(x\)出现了\(k\)次,那么它的贡献就是它的权值乘 ...

  6. 洛谷:P5072 [Ynoi2015]盼君勿忘

    原题地址:https://www.luogu.org/problem/P5072 题目简述 给定一个序列,每次查询一个区间[l,r]中所有子序列分别去重后的和mod p 思路 我们考虑每个数的贡献.即 ...

  7. Luogu P5072 [Ynoi2015]盼君勿忘

    题意 给定一个长度为 \(n\) 的序列 \(a\) 和 \(m\) 次询问,第 \(i\) 次询问需要求出 \([l_i,r_i]\) 内所有子序列去重之后的和,对 \(p_i\) 取模. \(\t ...

  8. [Ynoi2015]此时此刻的光辉(莫队)

    一道神题...自己写出来以后被卡常了...荣获洛谷最差解... 思路还是比较好想,对于每个数 \(\sqrt{n}\) 分块,对于 \(\sqrt{n}\) 以内的数,我们可以直接求出来.对于 \(\ ...

  9. Luogu5071 [Ynoi2015]此时此刻的光辉 【莫队】

    题目链接:洛谷 这个跟上上个Ynoi题目是一样的套路,首先我们知道\(n=\prod p_i^{\alpha_i}\)时\(d(n)=\prod (\alpha_i+1)\). 首先对所有数分解质因数 ...

随机推荐

  1. 软键盘 显示隐藏 测量高度 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  2. 在论坛中出现的比较难的sql问题:21(递归问题 检索某个节点下所有叶子节点)

    原文:在论坛中出现的比较难的sql问题:21(递归问题 检索某个节点下所有叶子节点) 最近,在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘记解决的方法了. ...

  3. 使用Harbor搭建Docker私有镜像仓库

    Harbor介绍:https://goharbor.io/ 前置条件 需要安装了docker和docker-compose 下载Harbor 在harbor下载页(https://github.com ...

  4. hibernate注解(自动建表如何有表DDL注释) -- Comment用法

    import java.io.Serializable; import java.sql.Date; import java.sql.Timestamp; import javax.persisten ...

  5. ajax中的事件

    blur : 当光标移开时(点击)触发 change : 当光标移开并且文本框中的内容和上一次不一致时(点击)触发

  6. table固定宽度与自动宽度

    table-layout:auto(创建的table默认是此布局模式): 对table和td.th指定的宽度无效,浏览器会计算所有单元格的内容宽度才能得出一列宽度 如果想对单元格的内容自动折行需使用w ...

  7. Nginx 安装目录 和 编译参数

    安装目录详解 查看安装nginx之后总共生成了哪些文件 rpm -ql nginx 在上面的文件中包括配置文件和日志文件 /etc/logrotate.d/nginx 类型:配置文件 作用:Nginx ...

  8. Linux软件包(源码包和二进制包)及其区别和特点

    Linux 下的软件包众多,而且几乎都是经 GPL 授权的,也就是说这些软件都免费,振奋人心吧?而且更棒的是,这些软件几乎都提供源代码(开源的),只要你愿意,就可以修改程序源代码,以符合个人的需求和习 ...

  9. Linux 之 文件

    文件名称 在linux中,windows概念中的文件夹和文件是没有区别的,都是统称为文件. 1.Linux中文件的名称大小写是敏感的 2.名称最多可以为255个字符 3.除了正斜线以外,都是有效字符 ...

  10. charles 手机抓包设置

    本文参考:charles 抓包手机 charles经常会进行手机上的网页抓包,比如去copy别人网站图片或脚本的时候o(∩_∩)o : 手机抓包的原理,和PC类似,手机依靠charles与服务端进行对 ...