题目大意:有两类武器(主武器和副武器),每类有若干把,每把武器都有一个基础属性S,以及k个附加属性,让你选一把主武器M和一把副武器S,使得最大。

显然后面的和式是一个k维的曼哈顿距离,带绝对值符号不好算,因此要想办法把绝对值去掉。由于两点任意一个维度(设其值分别为a,b)的曼哈顿距离要么是a-b,要么是b-a,符号总是相反的,因此可以二进制枚举每一维的正负号,对主武器取最大值,对副武器取最小值,两者相减就可以得到最大的曼哈顿距离。中间可能有的值不合法,但不合法的值一定不是最优值,因此可以忽略。

至于基础属性,只要对主武器加上S,对副武器减去S就行了。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+,inf=0x3f3f3f3f3f3f3f3fll;
int n,m,k,a[N][],b[N][],Log[N];
ll Sa[N][<<],Sb[N][<<];
int main() {
Log[]=-;
for(int i=; i<N; ++i)Log[i]=Log[i>>]+;
int T;
for(scanf("%d",&T); T--;) {
scanf("%d%d%d",&n,&m,&k);
for(int i=; i<n; ++i) {
scanf("%d",&a[i][k]);
for(int j=; j<k; ++j)scanf("%d",&a[i][j]);
}
for(int i=; i<m; ++i) {
scanf("%d",&b[i][k]);
for(int j=; j<k; ++j)scanf("%d",&b[i][j]);
}
for(int i=; i<n; ++i) {
for(int S=; S<(<<k); ++S)Sa[i][S]=;
for(int j=; j<k; ++j)Sa[i][]+=a[i][j];
Sa[i][]+=a[i][k];
}
for(int i=; i<m; ++i) {
for(int S=; S<(<<k); ++S)Sb[i][S]=;
for(int j=; j<k; ++j)Sb[i][]+=b[i][j];
Sb[i][]-=b[i][k];
}
for(int S=; S<(<<k); ++S) {
for(int i=; i<n; ++i)Sa[i][S]=Sa[i][S^(<<Log[S])]-*a[i][Log[S]];
for(int i=; i<m; ++i)Sb[i][S]=Sb[i][S^(<<Log[S])]-*b[i][Log[S]];
}
ll ans=;
for(int S=; S<(<<k); ++S) {
ll mx=~inf,mi=inf;
for(int i=; i<n; ++i)mx=max(mx,Sa[i][S]);
for(int i=; i<m; ++i)mi=min(mi,Sb[i][S]);
ans=max(ans,mx-mi);
}
printf("%lld\n",ans);
}
return ;
}

HDU - 6435 Problem J. CSGO (曼哈顿距离变换)的更多相关文章

  1. HDU - 6435 Problem J. CSGO 2018 Multi-University Training Contest 10 (二进制枚举+思维)

    题意:有N个主武器(MW)和M个副武器(SW),每个武器都有自己的S值,和K个附加属性xi.要选取一对主副武器搭配,搭配后获得的性能由该公式得出: 求获得最大的性能为多少. 分析:由于|xm - xs ...

  2. Gym - 101955E The Kouga Ninja Scrolls (曼哈顿距离变换+线段树)

    题意:有n个忍者(编号为1-n),每个忍者有三个属性:横坐标x,纵坐标y,所属门派c,要求支持三种操作: 1.改变第k个忍者的位置 2.改变第k个忍者的门派 3.查询编号为[l,r]之间的忍者中,所属 ...

  3. hdu 4311 & 4312 Meeting point 曼哈顿距离之和最小

    hdu 4311 题意 平面上\(n(n\leq 1e5)\)个点,找一个点到其它所有点的曼哈顿距离之和最小. 思路 如果是找一个坐标使得所有点到其曼哈顿距离之和最小,那么将\(n\)个横坐标排个序, ...

  4. [HDU 4666]Hyperspace[最远曼哈顿距离][STL]

    题意: 许多 k 维点, 求这些点之间的最远曼哈顿距离. 并且有 q 次操作, 插入一个点或者删除一个点. 每次操作之后均输出结果. 思路: 用"疑似绝对值"的思想, 维护每种状态 ...

  5. HDU 4311 Meeting point-1(曼哈顿距离最小)

    http://acm.hdu.edu.cn/showproblem.php?pid=4311 题意:在二维坐标中有n个点,现在要从这n个点中选出一个点,使得其他点到该点的曼哈顿距离总和最小. 思路: ...

  6. hdu6435 Problem J. CSGO标程讲解以及改正标程的一个错误(本来第一个样例过不了2333) 以及 poj2926 五维曼哈顿距离模板

    比赛的时候抄poj2926的模板,但改不来啊orz #include <iostream> #include <cstdio> #include <cstring> ...

  7. [hdu6435]Problem J. CSGO

    题目大意:给定$n$个$A$类元素和$m$个$B$类元素,每类元素有值$S$和$k$个值$x_0,x_1,\dots,x_{k-1}(k\leqslant 5)$. 要求选出一个$A$类元素$a$和$ ...

  8. 【POJ 3241】Object Clustering 曼哈顿距离最小生成树

    http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...

  9. hdu 6435 CSGO(最大曼哈顿距离)

    题目链接 Problem Description You are playing CSGO. There are n Main Weapons and m Secondary Weapons in C ...

随机推荐

  1. 使用TensorFlow训练SSD(二):数据的准备

    在进行模型的训练之前,需要准备好相关的数据,相关的数据还需要进行标注.这篇博客将使用labelImg标注工具来进行数据的处理. 首先可从https://github.com/tzutalin/labe ...

  2. Linux文件属性之软硬连接知识深度详解

    一.链接的概念 在Linux系统中,链接可分为两种:一种为硬链接(Hard Link),另一个位软连接或符号链接(Symbolic Link or link).我们在前面讲解过ln这个命令就是创建链接 ...

  3. SQLite基础-4.数据定义语言(DDL)

    目录 一.创建数据库 1. 创建方式 2. 数据库命名规范 二. 创建表 1. 基本用法 2. 数据表命名规范 3. 字段命名规范 三. 删除表 一.创建数据库 1. 创建方式 在第二章中我们讲了如何 ...

  4. T100-----汇出EXCEL表格

    例子:cxmp541 #excel匯出功能 ON ACTION exporttoexcel LET g_action_choice="exporttoexcel" IF cl_au ...

  5. charindex函数的用法

    例一: CustomName包含客户的First Name和Last Name,它们之间被一个空格隔开.我们用CHARINDX函数确定两个名字中间空格的位置.通过这个方法,我们可以分析ContactN ...

  6. 搞懂Dubbo服务发布与服务注册

    一.前言 本文讲服务发布与服务注册,服务提供者本地发布服务,然后向注册中心注册服务,将服务实现类以服务接口的形式提供出去,以便服务消费者从注册中心查阅并调用服务. 本文源码分析基于org.apache ...

  7. imx8移植opencv(3.0以上版本)笔记

    基本步骤参考我同事的博客:https://blog.csdn.net/hunzhangzui9837/article/details/89846928 以下是在移植到imx8平台时的笔记和遇到的问题及 ...

  8. centos配置LVS

    LVS有三种工作模式:NAT, TUN, DR.  DR是三种工作模式中性能最高的,TUN次之. 本文记录LVS/TUN和LVS/DR工作模式的配置过程. 环境: 三台CentOS 7 x64 虚拟机 ...

  9. STM32F10xxx_异常与中断

    STM32F10xxx_异常与中断 [TOC] 更新记录 version status description date author V1.0 C Create Document 2018.10.2 ...

  10. vue-router History 本地开发环境和nginx配置

    vue-router mode=history本地开发环境配置 解决方法1.修改webpack的的devServer配置项(devServe存在于,rvue-cli2在webapck.config.j ...