题目链接:戳我

蒟蒻的第一道子序列自动机!

给定两个01串A,B,求一个最短的01串,要求C不是A,B的子序列。要求如果同样短,输出字典序最小的。

那么我们先构建A,B两个串的子序列自动机。然后我们设\(f[i][j]\)表示现在已经匹配到A的第i位,B的第j位,现在还需要f[i][j]长度,才不是A,B的子序列。

那么\(f[i][j]\)从\(f[nxt_a[i][0/1]][nxt_b[i][0/1]]\)转移过来就行了。

比较重要的是如何构建出字典序最小的?

我们从x=0,y=0开始构建,每次选择ans-当前步数的状态,如果往后面接0合法,就优先接0,不行再接1.

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 4010
#define INF 0x3f3f3f3f
using namespace std;
int lena,lenb,ans;
int cur[2],nxt_a[MAXN][2],nxt_b[MAXN][2],f[MAXN][MAXN];
char a[MAXN],b[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%s",a+1),scanf("%s",b+1);
lena=strlen(a+1),lenb=strlen(b+1);
cur[0]=lena+1,cur[1]=lena+1;
for(int i=lena;i>=0;i--)
{
nxt_a[i][0]=cur[0],nxt_a[i][1]=cur[1];
if(i!=0) cur[a[i]-'0']=i;
}
cur[0]=lenb+1,cur[1]=lenb+1;
for(int i=lenb;i>=0;i--)
{
nxt_b[i][0]=cur[0],nxt_b[i][1]=cur[1];
if(i!=0) cur[b[i]-'0']=i;
}
f[lena+1][lenb+1]=0;
nxt_a[lena+1][0]=lena+1,nxt_a[lena+1][1]=lena+1;
nxt_b[lenb+1][0]=lenb+1,nxt_b[lenb+1][1]=lenb+1;
for(int i=lena+1;i>=0;i--)
for(int j=lenb+1;j>=0;j--)
{
if(i==lena+1&&j==lenb+1) continue;
f[i][j]=INF;
f[i][j]=min(f[i][j],f[nxt_a[i][0]][nxt_b[j][0]]+1);
f[i][j]=min(f[i][j],f[nxt_a[i][1]][nxt_b[j][1]]+1);
}
ans=f[0][0];
int x=0,y=0;
for(int i=1;i<=ans;i++)
{
if(f[nxt_a[x][0]][nxt_b[y][0]]==ans-i)
{
printf("0");
x=nxt_a[x][0],y=nxt_b[y][0];
continue;
}
if(f[nxt_a[x][1]][nxt_b[y][1]]==ans-i)
{
printf("1");
x=nxt_a[x][1],y=nxt_b[y][1];
}
}
return 0;
}

noi.ac#458 sequence的更多相关文章

  1. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  2. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  3. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  4. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  5. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  6. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  7. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  8. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  9. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

随机推荐

  1. Python 3.8.0 正式版发布,新特性初体验 全面介绍

    Python 3.8.0 正式版发布,新特性初体验 北京时间 10 月 15 日,Python 官方发布了 3.8.0 正式版,该版本较 3.7 版本再次带来了多个非常实用的新特性. 赋值表达式 PE ...

  2. 网易Java程序员两轮面试,这些问题你能答对几个?

    一转眼,2018 年已经过去了,你是否在满意的公司?拿着理想的薪水? 虽然"钱多.事少.离家近"的工作可能离技术人比较远,但是找到一份合适的工作,其实并不像想象中那么难.但是,有些 ...

  3. vue 模拟测试数据构建

    等价=====================================

  4. 《深入理解 Java 虚拟机》学习 -- 垃圾回收算法

    <深入理解 Java 虚拟机>学习 -- 垃圾回收算法 1. 说明 程序计数器,虚拟机栈,本地方法栈三个区域随线程而生,随线程而灭,这几个区域的内存分配和回收都具备确定性 Java 堆和方 ...

  5. 5.Shell变量

    5.Shell变量本章介绍 shell 中所使用的变量.Bash 会自动给其中一些变量赋默认值.5.1 波恩Shell的变量Bash 使用一些和波恩 shell 同样的变量.有时,Bash 会给它赋默 ...

  6. Comparable内部比较器 和 Comparator外部比较器

    1:Comparable a:基本数据类型封装类都继承了Comparable接口 b:TreeSet 和TreeMap集合默认是按照自然顺序排序的 c:继承类中实现compareTo()方法,在类内部 ...

  7. Bootstrap3基础教程 01 概述

    移动设备优先是 Bootstrap 3 的最显著的变化. 基础的页面: <!DOCTYPE html> <html> <head> <meta charset ...

  8. 【opencv源码解析】 二、 cvtColor

    这里以CV_BGR2YUV_I420来讲 1. opencv244 core.cpp void cv::cvtColor( InputArray _src, OutputArray _dst, int ...

  9. Struts配置文件

    本章节将带你学习Struts2 应用程序所需的基本配置.在这里可以看到哪些将被配置到一些重要的配置文件中:web.xml.struts.xml.struts-config.xml以及struts.pr ...

  10. Windows defender怎么才能彻底关闭?

    据不久前的一项测试表明,Windows系统自带的Windows defender软件在所有参与测试的杀毒安全软件中对win10的运行速度影响最大. 而Win10系统的Windows defender会 ...