noi.ac#458 sequence
题目链接:戳我
蒟蒻的第一道子序列自动机!
给定两个01串A,B,求一个最短的01串,要求C不是A,B的子序列。要求如果同样短,输出字典序最小的。
那么我们先构建A,B两个串的子序列自动机。然后我们设\(f[i][j]\)表示现在已经匹配到A的第i位,B的第j位,现在还需要f[i][j]长度,才不是A,B的子序列。
那么\(f[i][j]\)从\(f[nxt_a[i][0/1]][nxt_b[i][0/1]]\)转移过来就行了。
比较重要的是如何构建出字典序最小的?
我们从x=0,y=0开始构建,每次选择ans-当前步数的状态,如果往后面接0合法,就优先接0,不行再接1.
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 4010
#define INF 0x3f3f3f3f
using namespace std;
int lena,lenb,ans;
int cur[2],nxt_a[MAXN][2],nxt_b[MAXN][2],f[MAXN][MAXN];
char a[MAXN],b[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%s",a+1),scanf("%s",b+1);
lena=strlen(a+1),lenb=strlen(b+1);
cur[0]=lena+1,cur[1]=lena+1;
for(int i=lena;i>=0;i--)
{
nxt_a[i][0]=cur[0],nxt_a[i][1]=cur[1];
if(i!=0) cur[a[i]-'0']=i;
}
cur[0]=lenb+1,cur[1]=lenb+1;
for(int i=lenb;i>=0;i--)
{
nxt_b[i][0]=cur[0],nxt_b[i][1]=cur[1];
if(i!=0) cur[b[i]-'0']=i;
}
f[lena+1][lenb+1]=0;
nxt_a[lena+1][0]=lena+1,nxt_a[lena+1][1]=lena+1;
nxt_b[lenb+1][0]=lenb+1,nxt_b[lenb+1][1]=lenb+1;
for(int i=lena+1;i>=0;i--)
for(int j=lenb+1;j>=0;j--)
{
if(i==lena+1&&j==lenb+1) continue;
f[i][j]=INF;
f[i][j]=min(f[i][j],f[nxt_a[i][0]][nxt_b[j][0]]+1);
f[i][j]=min(f[i][j],f[nxt_a[i][1]][nxt_b[j][1]]+1);
}
ans=f[0][0];
int x=0,y=0;
for(int i=1;i<=ans;i++)
{
if(f[nxt_a[x][0]][nxt_b[y][0]]==ans-i)
{
printf("0");
x=nxt_a[x][0],y=nxt_b[y][0];
continue;
}
if(f[nxt_a[x][1]][nxt_b[y][1]]==ans-i)
{
printf("1");
x=nxt_a[x][1],y=nxt_b[y][1];
}
}
return 0;
}
noi.ac#458 sequence的更多相关文章
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
随机推荐
- Ruby Rails学习中:注册表单,注册失败,注册成功
接上篇 一. 注册表单 用户资料页面已经可以访问了, 但内容还不完整.下面我们要为网站创建一个注册表单. 1.使用 form_for 注册页面的核心是一个表单, 用于提交注册相关的信息(名字.电子邮件 ...
- Codeforces 1236E. Alice and the Unfair Game
传送门 首先可以注意到对于固定的起点 $S$ ,它最终能走到的终点一定是一段区间 这个用反证法容易证明,假设合法区间存在断点,这个点左右都可以作为终点 那么分成区间断点在起点左边和起点右边讨论一下即可 ...
- MySQL 事务、视图、索引
一.事务(Transaction) 1.1 什么是事务? SQL中,事务是指将一系列数据操作捆绑成为一个整体进行统一管理. 如果一个事务执行成功,该事务中进行的所有数据均会提交,称为数据库中的永久组成 ...
- 电脑主板插线方法图解_JFP1主板插线图解
电脑主板插线方法图解_JFP1主板插线图 仔细看主板上有对应的英文标识的,一对一插就行分别是电源,复位,硬盘灯,电源灯的负极,正极
- c#获取桌面路径和bin文件的路径
string path = Environment.GetFolderPath(Environment.SpecialFolder.DesktopDirectory): 生成的运行bin文件下的路径: ...
- C#异步编程学习笔记之-async和await
一.异步方法介绍(async和await):如果使用async修饰符将某种方法指定为异步方法,即启用以下两种功能.1.标记的异步方法可以使用await来指定暂停点.await运算符通知编译器异步方法: ...
- Apache Shiro漏洞复现
利用burp dns进行检测,脚本如下: import sys import uuid import base64 import subprocess from Crypto.Cipher impor ...
- 开源you-get项目爬虫,以及基于python+selenium的自动测试利器
写在前面 爬虫和自动测试,对于python来说是最合适不过也是最擅长的. 开源的项目也很多,例如you-get项目https://github.com/soimort/you-get.盗链和爬虫神器. ...
- Samba Server 的使用者帳號及密碼備份
Samba Server 自從 3.x 後改成使用 tdbsam 的方式來管理使用者的帳號及密碼,原本的帳號密碼都是存放在 /etc/samba 目錄之下,最近要做備份時,一時之間竟然找不到 Samb ...
- 十五,K8S集群调度原理及调度策略
目录 k8s调度器Scheduler Scheduler工作原理 请求及Scheduler调度步骤: k8s的调用工作方式 常用预选策略 常用优先函数 节点亲和性调度 节点硬亲和性 节点软亲和性 Po ...