【AGC030F】Permutation and Minimum(DP)
题解
首先可以想到分组后,去掉两边都填了数的组。
然后就会剩下\((-1,-1)\)和\((-1,x)\)或\((x,-1)\)这两种情况
因为是最小值序列的情况数,我们可以考虑从大到小填数,一个组填完了最小值就是当前填的数
设\(f[i][j][k]\)表示已经填到数\(i\)剩余\(j+k\)个填了一个数的组,其中有\(j\)个组是第一种情况填出来的,\(k\)个是第二种情况来的
分情况转移
如果这个数属于第一种情况,那么可以转移到:
\(f[i][j+1][k]:\)填到一个\((-1,-1)\)中
\(f[i][j-1][k]:\)和之前填了一个数的\((-1,-1)\)完成一组
\(f[i][j][k-1]:\)和\((x,-1)\)完成一组
如果属于第二种情况,那么可以转移到:
\(f[i][j][k+1]:\)不是最小值
\(f[i][j-1][k]:\)是最小值
最后因为\((-1,-1)\)是无序的,所以答案要乘上一个阶乘
Code
int cnt1 = 0, cnt2 = 0;
for (int i = 1; i < 2 * n; i += 2) {
if (a[i] == a[i + 1])
cnt2++;
else {
if (a[i] > a[i + 1]) swap(a[i], a[i + 1]);
if (a[i] == -1) cnt1++, flg[a[i + 1]] = 1;
else vis[a[i]] = vis[a[i + 1]] = 1;
}
}
int m = 0;
f[0][0][0] = 1;
for (int i = 2 * n; i >= 1; i--)
if (!vis[i]) {
m++;
if (!flg[i]) {
for (int j = 0; j <= cnt1 + cnt2; j++)
for (int k = 0; k <= cnt1; k++) {
pls(f[m][j + 1][k], f[m - 1][j][k]);
if (j) pls(f[m][j - 1][k], f[m - 1][j][k]);
if (k) pls(f[m][j][k - 1], 1ll * k * f[m - 1][j][k] % Mod);
}
}
else {
for (int j = 0; j <= cnt1 + cnt2; j++)
for (int k = 0; k <= cnt1; k++) {
pls(f[m][j][k + 1], f[m - 1][j][k]);
if (j) pls(f[m][j - 1][k], f[m - 1][j][k]);
}
}
}
int ans = f[m][0][0];
for (int i = 1; i <= cnt2; i++)
ans = 1ll * ans * i % Mod;
【AGC030F】Permutation and Minimum(DP)的更多相关文章
- 【agc030f】Permutation and Minimum(动态规划)
[agc030f]Permutation and Minimum(动态规划) 题面 atcoder 给定一个长度为\(2n\)的残缺的排列\(A\),定义\(b_i=min\{A_{2i-1},A_{ ...
- 【BZOJ】1068: [SCOI2007]压缩(dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1068 发现如果只设一维的话无法转移 那么我们开第二维,发现对于前i个来说,如果确定了M在哪里,第i个 ...
- 【AGC030F】Permutation and Minimum DP
题目大意 有一个长度为序列 \(a\),其中某些位置的值是 \(-1\). 你要把 \(a\) 补成一个排列. 定义 \(b_i=\min(a_{2i-1},a_{2i})\),求有多少种可能的 \( ...
- 【51nod1519】拆方块[Codeforces](dp)
题目传送门:1519 拆方块 首先,我们可以发现,如果第i堆方块被消除,只有三种情况: 1.第i-1堆方块全部被消除: 2.第i+1堆方块全部被消除:(因为两侧的方块能够保护这一堆方块在两侧不暴露) ...
- 【bzoj1925】地精部落[SDOI2010](dp)
题目传送门:1925: [Sdoi2010]地精部落 这道题,,,首先可以一眼看出他是要我们求由1~n的排列组成,并且抖来抖去的序列的方案数.然后再看一眼数据范围,,,似乎是O(n^2)的dp?然后各 ...
- 【ZOJ2278】Fight for Food(dp)
BUPT2017 wintertraining(16) #4 F ZOJ - 2278 题意 给定一个10*10以内的地图,和p(P<=30000)只老鼠,给定其出现位置和时间T(T<=1 ...
- 【POJ】3616 Milking Time(dp)
Milking Time Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10898 Accepted: 4591 Des ...
- 【POJ】2385 Apple Catching(dp)
Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13447 Accepted: 6549 D ...
- 【vijos】1764 Dual Matrices(dp)
https://vijos.org/p/1764 自从心态好了很多后,做题的确很轻松. 这种题直接考虑我当前拿了一个,剩余空间最大能拿多少即可. 显然我们枚举每一个点拿出一个矩形(这个点作为右下角), ...
随机推荐
- 把QString写到文件中可以用toutf8()函数
把QString写到文件中可以用toutf8()函数 QByteArray QString::toUtf8() const Returns a UTF-8 representation of the ...
- vuex 理解
为什么要用vuex?页面由多个视图组成,用户操作会引视图的状态变化. 多个视图依赖于同一状态(例如:菜单导航) 来自不同视图的行为需要变更同一状态(例如:评论弹幕) vuex 的作用 为vue.js开 ...
- 使用RabbitMQ实现分布式事务
RabbitMQ解决分布式事务思路: 案例: 经典案例,以目前流行点外卖的案例,用户下单后,调用订单服务,让后订单服务调用派单系统通知送外卖人员送单,这时候订单系统与派单系统采用MQ异步通讯. Rab ...
- Spring Boot 项目集成 Alibaba Druid
Druid 是一个非常好用的数据库连接池,但是他的好并不止体现在作为一个连接池加快数据访问性能上和连接管理上,他带有一个强大的监控工具:Druid Monitor.不仅可以监控数据源和慢查询,还可以监 ...
- WordPress,SAP Kyma和微信三者的集成
我们来继续学习如何在实战中使用SAP Kyma. Jerry在之前的文章里,分别介绍了如何本地搭建WordPress实例: 什么?在SAP中国研究院里还需要会PHP开发? 以及如何把这个本地搭建的Wo ...
- 11.ForkJoinPool 分支/合并框架 (工作窃取)
/*ForkJoinPool 分支/合并框架 (工作窃取)*/ Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork) 成若干个小任务(拆到给出的临界值为止),再将一个个的小 ...
- SmartEvent with kbmMW #1
前言 前面的文章,我写了有关SmartBinding框架方面的内容.SmartBinding的目的是将数据容器绑定到一起,通常情况下,数据容器可以是显示数据或与数据交互的控件(Edit,ListVie ...
- Dell T30解决报Alert! Cover was previously removed.
DELL T30自检中卡在F1/F2/F5选项,需要F1手动启动时报:Alert! Cover was previously removed是指向机器盖问题 [解决方法]: 1.检查机箱盖是否有盖紧 ...
- django 新项目
1.创建虚拟环境 mkvirtualenv - p python3 2.pycharm : 在pycharm中新建项目, 取名.添加虚拟机上的虚拟环境
- Windows10官方正版系统的安装、激活、升级、U盘制作,无毒无害无捆绑无风险教程
一般电脑系统出了其他问题或电脑用久太卡了,可以选择此类方法解决系统卡顿问题,重置电脑系统或也可以恢复出厂设置 如果出现重置找不到恢复环境问题 可以通过下载系统镜像来解决,进入 MSDN 网站下载所需系 ...