题目: 链接:https://codeforces.com/problemset/problem/940/F

题意:给你n个数,a[i]有q个操作,操作有两种:操作1.       1 x y 表示询问, mex{ c[ 1 ],c[ x + 1 ],...c[ 1e9 ] } 的值, 其中 c[i] 表示 a[ i ] 在 区间 [ x , y ] 出现的次数, (mex{   }  的意思呢,是从1开始数,第一个不出现在集合 {   }  里的数, 比如  mex{  1, 2,  4  } = = 3     因为此题是从1开始数 )       操作2.      2  p  x  将 a[ p ]  重新赋值 为 x                  对每个操作1 输出答案

思路: 将  a[ i ]  离散化  因为 数据有点大,然后找答案 直接 暴力 找   其他的基本上就是 带修莫队 的 模板了

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,0,sizeof(i))
#define make(i,j) make_pair(i,j)
using namespace std;
const int N=2e5+;
int a[N],pos[N],num[N],cnt[N],now[N],p,ans[N],l=,r=; /// num就是a[i]在l,r出现的次数,然后cnt就是那个 mex { } 的集合
struct noq {
int l,r,id,t;
}q[N];
struct noc {
int x,old,ne;
}c[N];
map<int,int>vis; ///离散化 a[i] 需要
bool cmp(noq a,noq b) {
if(pos[a.l]==pos[b.l]) {
if(pos[a.r]==pos[b.r]) return a.t<b.t;
return pos[a.r]<pos[b.r];
}
return pos[a.l]<pos[b.l];
}
int get(int x) { /// 得到 离散化后的a[i]
if(vis[x]==) vis[x]=++p;
return vis[x];
}
void add(int x,int d) {
cnt[num[x]]--;
num[x]+=d;
cnt[num[x]]++;
}
void go(int x,int ne) {
if(l<=x && x<=r) {
add(a[x],-); add(ne,);
}
a[x]=ne;
}
int cal() {///找答案
for(int i=;;i++) if(cnt[i]==) return i;
}
int main() {
int n,m; int head=,tail=;
scanf("%d %d",&n,&m); int M=(int)pow(n,0.666666);
rep(i,,n) {
scanf("%d",&a[i]);
now[i]=a[i]=get(a[i]);
pos[i]=(i-)/M;
}
rep(i,,m) {
int ch; int x,y;
scanf("%d %d %d",&ch,&x,&y);
if(ch==) q[++head]=(noq){x,y,head,tail};
else {
y=get(y); ///记得y也要离散化,因为 now[x] 是 离散化后的 a[i]
c[++tail]=(noc){x,now[x],y};
now[x]=y;
}
}
sort(q+,q++head,cmp); int t=;
rep(i,,head) {
while(t<q[i].t) go(c[t+].x,c[t+].ne),++t;
while(t>q[i].t) go(c[t].x,c[t].old),--t;
while(l<q[i].l) add(a[l++],-);
while(l>q[i].l) add(a[--l],);
while(r<q[i].r) add(a[++r],);
while(r>q[i].r) add(a[r--],-);
ans[q[i].id]=cal();
}
rep(i,,head) printf("%d\n",ans[i]);
return ;
}

CF 940F - Machine Learning ( 带 修 )的更多相关文章

  1. F. Machine Learning 带修端点莫队

    F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  2. Codeforces 940F Machine Learning 带修改莫队

    题目链接 题意 给定一个长度为\(n\)的数组\(a\),\(q\)个操作,操作分两种: 对于区间\([l,r]\),询问\(Mex\{c_0,c_1,c_2,⋯,c_{10^9}\}\),其中\(c ...

  3. Codeforces 940F Machine Learning (带修改莫队)

    题目链接  Codeforces Round #466 (Div. 2) Problem F 题意  给定一列数和若干个询问,每一次询问要求集合$\left\{c_{0}, c_{1}, c_{2}, ...

  4. CF940F Machine Learning 带修改莫队

    题意:支持两种操作:$1.$ 查询 $[l,r]$ 每个数字出现次数的 $mex$,$2.$ 单点修改某一位置的值. 这里复习一下带修改莫队. 普通的莫队中,以左端点所在块编号为第一关键字,右端点大小 ...

  5. CF940F Machine Learning(带修莫队)

    首先显然应该把数组离散化,然后发现是个带修莫队裸题,但是求mex比较讨厌,怎么办?其实可以这样求:记录每个数出现的次数,以及出现次数的出现次数.至于求mex,直接暴力扫最小的出现次数的出现次数为0的正 ...

  6. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  8. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)

    转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...

随机推荐

  1. yii2 migrate 数据库迁移的简单分享

    开发中经常会用到的方法小结: 1../yii migrate xxx_xx 在表中插入某字段 : public function up() {$this->addColumn('{{applic ...

  2. 『Linux』第二节: 安装Linux系统

    一. 准备工具 1. centOS系统下载 http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1810.is ...

  3. 深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用

    深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深 ...

  4. java.lang.ClassCastException: com.sun.proxy.$Proxy4 cannot be cast

    解决方案 在配置文件中配置proxy-target-class="true" <aop:aspectj-autoproxy proxy-target-class=" ...

  5. CMake入门-04-自定义编译选项

    工作环境 系统:macOS Mojave 10.14.6 CMake: Version 3.15.0-rc4 Hello,World! - 自定义编译选项 CMake 允许为项目增加编译选项,从而可以 ...

  6. java 框架-缓冲-Redis 2Jedis操作

    https://www.cnblogs.com/wlandwl/p/redis.html Redis介绍及Jedis基础操作   1.Redis简介 Redis 是一个开源(BSD许可)的,内存中的数 ...

  7. linux安装tmux分屏插件

    linuxtmux分屏 一.安装tmux 二.基本使用 三.鼠标操作 一.安装tmux yum install -y tmux TMUX2版本以下 二.基本使用 使用tmux一般使用命令和快捷键来操作 ...

  8. ZROI17普及23-B星空题解--图的灵活转化

    题目链接 版权原因不予提供 分析 这题思路很妙啊,虽然已经算半个套路题(因为我太菜了) 将框视为点,若一个球能放在\(x\)或\(y\)框,则\(x,y\)连一条无向边.有一条非常显然的性质是:在联通 ...

  9. qt连接oracle数据库

    由与qt开源版本没有提供oracle数据库驱动,需要自己根据源代码来手动编译oracle驱动. 经过近三天的折腾,终于成功编译oracle驱动,连接到数据库 ps:期间经过各种失败疼苦迷茫.现在终于完 ...

  10. canvas验证码实现

    1 <!DOCTYPE html> <html> <!-- head --> <head> <meta charset="utf-8&q ...