[Feature] Compare the effect of different scalers
Ref: Compare the effect of different scalers on data with outliers
主要是对该代码的学习研究。
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import MaxAbsScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import Normalizer
from sklearn.preprocessing import QuantileTransformer
from sklearn.preprocessing import PowerTransformer from sklearn.datasets import fetch_california_housing print(__doc__) dataset = fetch_california_housing()
X_full, y_full = dataset.data, dataset.target # Take only 2 features to make visualization easier
# Feature of 0 has a long tail distribution.
# Feature 5 has a few but very large outliers. X = X_full[:, [0, 5]]
################################################################
distributions = [
('Unscaled data', X),
('Data after standard scaling',
StandardScaler().fit_transform(X)),
('Data after min-max scaling',
MinMaxScaler().fit_transform(X)),
('Data after max-abs scaling',
MaxAbsScaler().fit_transform(X)),
('Data after robust scaling',
RobustScaler(quantile_range=(25, 75)).fit_transform(X)),
('Data after power transformation (Yeo-Johnson)',
PowerTransformer(method='yeo-johnson').fit_transform(X)),
('Data after power transformation (Box-Cox)',
PowerTransformer(method='box-cox').fit_transform(X)),
('Data after quantile transformation (gaussian pdf)',
QuantileTransformer(output_distribution='normal').fit_transform(X)),
('Data after quantile transformation (uniform pdf)',
QuantileTransformer(output_distribution='uniform').fit_transform(X)),
('Data after sample-wise L2 normalizing',
Normalizer().fit_transform(X)),
] # scale the output between 0 and 1 for the colorbar
y = minmax_scale(y_full)
Original data
Each transformation is plotted showing two transformed features, with the left plot showing the entire dataset, and the right zoomed-in to show the dataset without the marginal outliers. A large majority of the samples are compacted to a specific range, [0, 10] for the median income and [0, 6] for the number of households. Note that there are some marginal outliers (some blocks have more than 1200 households). Therefore, a specific pre-processing can be very beneficial depending of the application. In the following, we present some insights and behaviors of those pre-processing methods in the presence of marginal outliers.
make_plot(0)

StandardScaler
StandardScaler removes the mean and scales the data to unit variance. However, the outliers have an influence when computing the empirical mean and standard deviation which shrink the range of the feature values as shown in the left figure below. Note in particular that because the outliers on each feature have different magnitudes, the spread of the transformed data on each feature is very different: most of the data lie in the [-2, 4] range for the transformed median income feature while the same data is squeezed in the smaller [-0.2, 0.2] range for the transformed number of households.
StandardScaler therefore cannot guarantee balanced feature scales in the presence of outliers.
- 收敛速度
- 不同属性列的数据可比性
- 不太适用outliers情况
- 不适用稀疏数据
make_plot(1)

MinMaxScaler
MinMaxScaler rescales the data set such that all feature values are in the range [0, 1] as shown in the right panel below. However, this scaling compress all inliers in the narrow range [0, 0.005] for the transformed number of households.
As StandardScaler, MinMaxScaler is very sensitive to the presence of outliers.
- 保留了结构,可用于稀疏数据
make_plot(2)

MaxAbsScaler
MaxAbsScaler differs from the previous scaler such that the absolute values are mapped in the range [0, 1]. On positive only data, this scaler behaves similarly to MinMaxScaler and therefore also suffers from the presence of large outliers.
- 保留了结构,可用于稀疏数据
make_plot(3)

RobustScaler
Unlike the previous scalers, the centering and scaling statistics of this scaler are based on percentiles and are therefore not influenced by a few number of very large marginal outliers. Consequently, the resulting range of the transformed feature values is larger than for the previous scalers and, more importantly, are approximately similar: for both features most of the transformed values lie in a [-2, 3] range as seen in the zoomed-in figure. Note that the outliers themselves are still present in the transformed data. If a separate outlier clipping is desirable, a non-linear transformation is required (see below).
- 使outlier点保留了离群特征。
make_plot(4)

PowerTransformer
PowerTransformer applies a power transformation to each feature to make the data more Gaussian-like. Currently, PowerTransformer implements the Yeo-Johnson and Box-Cox transforms. The power transform finds the optimal scaling factor to stabilize variance and mimimize skewness through maximum likelihood estimation. By default, PowerTransformer also applies zero-mean, unit variance normalization to the transformed output. Note that Box-Cox can only be applied to strictly positive data. Income and number of households happen to be strictly positive, but if negative values are present the Yeo-Johnson transformed is to be preferred.
make_plot(5)
make_plot(6)


QuantileTransformer (Gaussian output)
QuantileTransformer has an additional output_distribution parameter allowing to match a Gaussian distribution instead of a uniform distribution. Note that this non-parametetric transformer introduces saturation artifacts for extreme values.
make_plot(7)

QuantileTransformer (uniform output)
QuantileTransformer applies a non-linear transformation such that the probability density function of each feature will be mapped to a uniform distribution. In this case, all the data will be mapped in the range [0, 1], even the outliers which cannot be distinguished anymore from the inliers.
As RobustScaler, QuantileTransformer is robust to outliers in the sense that adding or removing outliers in the training set will yield approximately the same transformation on held out data. But contrary to RobustScaler, QuantileTransformer will also automatically collapse any outlier by setting them to the a priori defined range boundaries (0 and 1).
make_plot(8)

Normalizer
The Normalizer rescales the vector for each sample to have unit norm, independently of the distribution of the samples. It can be seen on both figures below where all samples are mapped onto the unit circle. In our example the two selected features have only positive values; therefore the transformed data only lie in the positive quadrant. This would not be the case if some original features had a mix of positive and negative values.
- 经常在文本分类和聚类当中使用
make_plot(9) plt.show()

[Feature] Compare the effect of different scalers的更多相关文章
- [ML] Feature Transformers
方案选择可参考:[Scikit-learn] 4.3 Preprocessing data 代码示范可参考:[ML] Pyspark ML tutorial for beginners 本篇涉及:Fe ...
- sklearn中的数据预处理----good!! 标准化 归一化 在何时使用
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...
- 改变BootStrap主题颜色
摘自:http://www.asp.net/visual-studio/overview/2013/creating-web-projects-in-visual-studio#bootstrap Y ...
- aspNet各种模块介绍
For browsers that do not support HTML5, you can use Modernizr. Modernizr is an open-source JavaScrip ...
- Get Started with the Google Fonts API
Get Started with the Google Fonts API This guide explains how to use the Google Fonts API to add fon ...
- A successful Git branching model——经典篇
A successful Git branching model In this post I present the development model that I’ve introduced f ...
- Jackson 工具类使用及配置指南
目录 前言 Jackson使用工具类 Jackson配置属性 Jackson解析JSON数据 Jackson序列化Java对象 前言 Json数据格式这两年发展的很快,其声称相对XML格式有很对好处: ...
- Jackson工具类使用及配置指南、高性能配置(转)
Jackson使用工具类 通常,我们对JSON格式的数据,只会进行解析和封装两种,也就是JSON字符串--->Java对象以及Java对象--->JSON字符串. public class ...
- Create the Project
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/getting-started/getting-started-with-aspn ...
随机推荐
- 使用iframe框架时,实现子页面内跳转到整个页面,而不是在子页面内跳转
首先先来描述一下我所遇到的问题,我在一个首页的index.jsp页面中用到了iframe框架,见下图 在iframe中引入jsp页面的路径,是几个iframe框架组合成的一个完整的页面,但是他们的存在 ...
- Muduo阅读
创建了EventLoop对象的线程是IO线程,其主要功能是运行事件循环EventLoop::loop(), one loop per thread 事件循环必须在IO线程中运行 Reactor关键结构 ...
- Python: sqlite3模块
sqlite3 --- SQLite 数据库 DB-API 2.0 接口模块 SQLite 是一个C语言库,它可以提供一种轻量级的基于磁盘的数据库,这种数据库不需要独立的服务器进程,也允许需要使用一种 ...
- Force git to overwrite local files on pull 使用pull强制覆盖本地文件 转载自:http://snowdream.blog.51cto.com/3027865/1102441
How do I force an overwrite of local files on a git pull? I think this is the right way: $ git fetch ...
- springmvc处理一个请求的全流程
首先,用户的浏览器发出了一个请求,这个请求经过互联网到达了我们的服务器. Servlet 容器首先接待了这个请求,并将该请求委托给 DispatcherServlet 进行处理. 接着 Dispatc ...
- 利用vue v-bind属性绑定bootstrap样式以及输出数据
自从知道了bootstrap,就被他简介,大气美观的样式吸引,即使在vue框架中,仍旧想使用,下面给出了vue适配版和原版的代码,以飨读者 数据输出部分 export default { data() ...
- node.js----一个httpserver提交和解析get参数的例子
前端代码 <!doctype html> <html lang="en"> <head> <meta charset="utf- ...
- MFC、API、C++三者的区别
MFC(Microsoft Foundation Class)是微软的基础类库,只能用于Windows系统. API(Application Programming Interface)是应用程序编程 ...
- Java进阶知识16 Spring创建IOC容器的两种方式
1.直接得到 IOC 容器对象 ApplicationContext applicationContext = new ClassPathXmlApplicationContext("app ...
- 括号序列的dp问题模型
括号序列的dp问题模型 Codeforces314E ◦给定一个长度为n的仅包含左括号和问号的字符串,将问号变成左括号或 右括号使得该括号序列合法,求方案总数. ◦例如(())与()()都是合法的括号 ...