学了几天Pytorch,大致明白代码在干什么了,贴一下。。

import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch import nn, optim
from torch.nn import functional as F class ResBlk(nn.Module):
"""
resnet block
"""
def __init__(self, ch_in, ch_out):
super(ResBlk, self).__init__() self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out) self.extra = nn.Sequential()
if ch_out != ch_in:
# [b, ch_in, h, w] => [b, ch_out, h, w]
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
nn.BatchNorm2d(ch_out)
) def forward(self,x):
"""
x:[b, ch, h, w]
"""
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# short cut
# extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
# element-wise add: [b, ch_in, h, w] with [b, ch_out, h, w]
out = self.extra(x) + out return out class ResNet18(nn.Module): def __init(self):
super(ResNet18, self).__init__() self.conv1 = nn.Sequential(
nn.Conv2d(3,64,kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64)
)
# followd 4 blocks
# [b, 64, h, w] => [b, 128, h, w]
self.blk1 = ResBlk(64,128)
# [b, 128, h, w] => [b, 256, h, w]
self.blk2 = ResBlk(128,256)
# [b, 256, h, w] => [b, 512, h, w]
self.blk3 = ResBlk(256,512)
# [b, 512, h, w] => [b, 1024, h, w]
self.blk4 = ResBlk(512,1024) self.outlayer = nn.Linear(1024, 10) def forward(self, x): x = F.relu(self.conv1(x))
# [b, 64, h, w] => [b, 1024, h, w]
x = self.blk1(x)
x = self.blk2(x)
x = self.blk3(x)
x = self.blk4(x) x = self.outlayer(x) return x def main(): blk = ResBlk(64, 128)
tmp = torch.randn(2, 64, 32, 32)
out = blk(tmp)
print(out.shape) if __name__ == '__main__':
main() #
torch.Size([2, 128, 32, 32])

ResNet主要是利用残差相加的优势进行网络层数加深,原来输入图片是64通道,要求经过一个ResNet Block后输出是128维,那么那个要加的X也要升维变成128,因此代码里做出了处理。

Pytorch构建ResNet的更多相关文章

  1. pytorch构建自己的数据集

    现在需要在json文件里面读取图片的URL和label,这里面可能会出现某些URL地址无效的情况. python读取json文件 此处只需要将json文件里面的内容读取出来就可以了 with open ...

  2. 使用pytorch构建神经网络的流程以及一些问题

    使用PyTorch构建神经网络十分的简单,下面是我总结的PyTorch构建神经网络的一般过程以及我在学习当中遇到的一些问题,期望对你有所帮助. PyTorch构建神经网络的一般过程 下面的程序是PyT ...

  3. PyTorch对ResNet网络的实现解析

    PyTorch对ResNet网络的实现解析 1.首先导入需要使用的包 import torch.nn as nn import torch.utils.model_zoo as model_zoo # ...

  4. 使用PyTorch构建神经网络以及反向传播计算

    使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在 ...

  5. 使用PyTorch构建神经网络模型进行手写识别

    使用PyTorch构建神经网络模型进行手写识别 PyTorch是一种基于Torch库的开源机器学习库,应用于计算机视觉和自然语言处理等应用,本章内容将从安装以及通过Torch构建基础的神经网络,计算梯 ...

  6. pytorch构建自己设计的层

    下面是如何自己构建一个层,分为包含自动反向求导和手动反向求导两种方式,后面会分别构建网络,对比一下结果对不对. -------------------------------------------- ...

  7. 解读 pytorch对resnet的官方实现

    地址:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 贴代码 import torch.nn as ...

  8. 【深度学习】基于Pytorch的ResNet实现

    目录 1. ResNet理论 2. pytorch实现 2.1 基础卷积 2.2 模块 2.3 使用ResNet模块进行迁移学习 1. ResNet理论 论文:https://arxiv.org/pd ...

  9. 基于pytorch实现Resnet对本地数据集的训练

    本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.p ...

随机推荐

  1. pandas中DataFrame和Series的数据去重

    在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.on ...

  2. 灵活部署django缓存,并使用

    使用django内置的redis=============>pip3 install django-redisCACHES = { 'default':{ 'BACKEND':'django_r ...

  3. mobx是什么?有什么优点?

    mobx是一个简单可扩展的状态管理库. mobx vs redux mobx是学习成本更低,性能更好的状态解决方案. mobx开发难度低: mobx代码量少: mobx渲染性能好: mobx参考

  4. Leetcode部分题目整理(Javascript)

    3.无重复字符的最长子串 /** * @param {string} s * @return {number} */ var lengthOfLongestSubstring = function(s ...

  5. FFT算法理解与c语言的实现

    完整内容迁移至 http://www.face2ai.com/DIP-2-3-FFT算法理解与c语言的实现/ http://www.tony4ai.com/DIP-2-3-FFT算法理解与c语言的实现 ...

  6. 事件驱动和IO操作

    事件驱动和异步IO 通常,我们写服务器处理模型的程序时,有以下几种模型: (1)每收到一个请求,创建一个新的进程,来处理该请求: (2)每收到一个请求,创建一个新的线程,来处理该请求: (3)每收到一 ...

  7. 一 、Linux基础命令及使用帮助

    linux的哲学思想: 一切皆文件: 把几乎所有资源,包括硬件设备都组织为文件系统 由众多单一目的小程序组成:一个程序只实现一个功能,而且要做好 组合小程序完成复杂任务 尽量避免跟用户交互 目的:实现 ...

  8. ELK(ElasticSearch, Logstash, Kibana) 实现 Java 分布式系统日志分析架构

    一.首先理解为啥要使用ELK 日志主要分为三类:系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.通过分析日志可以了解服务器的 ...

  9. Python入门(下载编译器,并安装)

    进入官网 https://www.python.org/ 当前:官网上面的版本是3.7.3 在Windows上面安装比较简单,就一直点下一步就ok了 我这边是选的第一个, 我学习的教程建议我用第二个, ...

  10. Go之GOPATH与工作空间

    来自: GOPATH与工作空间 GOPOATH 设置 go 命令依赖一个重要的环境变量:$GOPATH 在类 Unix 环境下大概这样设置: exprt GOPATH=/home/apple/mygo ...