InputDStream的继承关系。他们都是使用InputDStream这个抽象类的接口进行操作的。特别注意ReceiverInputDStream这个类,大部分时候我们使用的是它作为扩展的基类,因为它才能(更容易)使接收数据的工作分散到各个worker上执行,更符合分布式计算的理念。
所有的输入流都某个时间间隔将数据以block的形式保存到spark memory中,但以spark core不同的是,spark streaming默认是将对象序列化后保存到内存中。



/**
* This is the abstract base class for all input streams. This class provides methods
* start() and stop() which is called by Spark Streaming system to start and stop receiving data.
* Input streams that can generate RDDs from new data by running a service/thread only on
* the driver node (that is, without running a receiver on worker nodes), can be
* implemented by directly inheriting this InputDStream. For example,
* FileInputDStream, a subclass of InputDStream, monitors a HDFS directory from the driver for
* new files and generates RDDs with the new files. For implementing input streams
* that requires running a receiver on the worker nodes, use
* [[org.apache.spark.streaming.dstream.ReceiverInputDStream]] as the parent class.
*
* @param ssc_ Streaming context that will execute this input stream
*/
abstract class InputDStream[T: ClassTag] (@transient ssc_ : StreamingContext)
extends DStream[T](ssc_) {

private[streaming] var lastValidTime: Time = null

ssc.graph.addInputStream(this)

/**
* Abstract class for defining any [[org.apache.spark.streaming.dstream.InputDStream]]
* that has to start a receiver on worker nodes to receive external data.
* Specific implementations of NetworkInputDStream must
* define `the getReceiver()` function that gets the receiver object of type
* [[org.apache.spark.streaming.receiver.Receiver]] that will be sent
* to the workers to receive data.
* @param ssc_ Streaming context that will execute this input stream
* @tparam T Class type of the object of this stream
*/
abstract class ReceiverInputDStream[T: ClassTag](@transient ssc_ : StreamingContext)
extends InputDStream[T](ssc_) {

/** Keeps all received blocks information */
private lazy val receivedBlockInfo = new HashMap[Time, Array[ReceivedBlockInfo]]

/** This is an unique identifier for the network input stream. */
val id = ssc.getNewReceiverStreamId()

/**
* Gets the receiver object that will be sent to the worker nodes
* to receive data. This method needs to defined by any specific implementation
* of a NetworkInputDStream.
*/
def getReceiver(): Receiver[T]
最终都是以BlockRDD返回的
/** Ask ReceiverInputTracker for received data blocks and generates RDDs with them. */
override def compute(validTime: Time): Option[RDD[T]] = {
// If this is called for any time before the start time of the context,
// then this returns an empty RDD. This may happen when recovering from a
// master failure
if (validTime >= graph.startTime) {
val blockInfo = ssc.scheduler.receiverTracker.getReceivedBlockInfo(id)
receivedBlockInfo(validTime) = blockInfo
val blockIds = blockInfo.map(_.blockId.asInstanceOf[BlockId])
Some(new BlockRDD[T](ssc.sc, blockIds))
} else {
Some(new BlockRDD[T](ssc.sc, Array[BlockId]()))
}
}
































spark streaming 5: InputDStream的更多相关文章

  1. Spark Streaming源码分析 – InputDStream

    对于NetworkInputDStream而言,其实不是真正的流方式,将数据读出来后不是直接去处理,而是先写到blocks中,后面的RDD再从blocks中读取数据继续处理这就是一个将stream离散 ...

  2. Spark Streaming消费Kafka Direct方式数据零丢失实现

    使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...

  3. spark streaming kafka1.4.1中的低阶api createDirectStream使用总结

    转载:http://blog.csdn.net/ligt0610/article/details/47311771 由于目前每天需要从kafka中消费20亿条左右的消息,集群压力有点大,会导致job不 ...

  4. spark streaming集成kafka

    Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Clouder ...

  5. spark streaming从指定offset处消费Kafka数据

    spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high ...

  6. Spark streaming + Kafka 流式数据处理,结果存储至MongoDB、Solr、Neo4j(自用)

    KafkaStreaming.scala文件 import kafka.serializer.StringDecoder import org.apache.spark.SparkConf impor ...

  7. spark streaming 接收kafka消息之一 -- 两种接收方式

    源码分析的spark版本是1.6. 首先,先看一下 org.apache.spark.streaming.dstream.InputDStream 的 类说明: This is the abstrac ...

  8. Spark Streaming消费Kafka Direct保存offset到Redis,实现数据零丢失和exactly once

    一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章 ...

  9. Error- Overloaded method value createDirectStream in error Spark Streaming打包报错

    直接上代码 StreamingExamples.setStreamingLogLevels() val Array(brokers, topics) = args // Create context ...

随机推荐

  1. md加密 16位 32位

    16位大写 //生成MD5 public static String getMD5(String message) { String md5 = ""; try { Message ...

  2. maven 父子工程打包 并且上传linux服务器

    先对父工程进行 mvn clean 再对子工程执行 install wagon:upload-single wagon:sshexec 使用wagon前提: 本地maven 的settings.xml ...

  3. python 实现服务树结构化

    1.  所有服务树数据 tree_list = [{'id': 1, 'pid': 0, 'name': '1211', 'path': '1211', 'leaf': 0, 'type': 0}, ...

  4. pyqt5 中的addStretch

    一直对addStretch感觉怪怪的,直到看见了下面这段话: addStretch()函数用于在控件按钮间增加伸缩量, 伸缩量的比例为1:1:1:6,意思就是将控件以外的空白地方按设定的比例等分为9份 ...

  5. [转]DELL PERC 系列阵列卡选型和用法指南

    引用地址 https://www.sulabs.net/?p=895 DELL PERC 系列阵列卡选型和用法指南 2018年12月29日 Su 本文缘起于一位朋友在生产服务器硬件中,使用了错误的阵列 ...

  6. SQL 多表查询展示

    ########################多表########################SELECT COUNT(*) FROM MEMBER1 A; 查询出来的结果为43行数据: SEL ...

  7. 【转载】Attention Mechanism in Deep Learning

    本篇随笔为转载,原文地址:知乎,深度学习中Attention Mechanism详细介绍:原理.分类及应用.参考链接:深度学习中的注意力机制. Attention是一种用于提升基于RNN(LSTM或G ...

  8. Linux命令行——scp命令

     原创声明:本文系博主原创文章,转载或引用请注明出处. scp 一般格式: scp [option] src dst 1. src和dst格式为: [user@]host:/path/to/file ...

  9. 第二章 Vue快速入门--14 使用v-model实现计算器的案例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  10. metapath2vec 笔记

    Homogeneous networks: representative of singular type of nodes and relationships Challenges: multipl ...