2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度
题意
给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q! \ \% P$.
分析
暴力...说不定好的板子能过。
根据威尔逊定理,如果 $p$ 为质数,则有 $(p-1)! \equiv p-1(mod \ p)$.
$\displaystyle Q! = \frac{(P-1)!}{(Q+1)(Q+2)...(p-1)} \equiv (p-1)*inv\ (mod \ P)$.
根据素数定理,$\displaystyle \pi (x) \sim \frac{x}{lnx}$,其中 $\pi (x)$ 表示不超过 $x$ 的素数的个数。直观的看,$x$ 越大,素数密度越大,接近线性。
在题给的范围,两个相邻素数通常只隔几十个数。
为了快速找到前一个质数,这里使用了Miller-Rabin素数测试算法(虽然题目 $\sqrt n$ 也能过
#include<bits/stdc++.h>
using namespace std; typedef long long int ll; ll mod_mul(ll a, ll b, ll mod)
{
ll res = ;
while (b)
{
if (b & )
res = (res + a) % mod;
a = (a + a) % mod;
b >>= ;
}
return res;
} ll mod_pow(ll a, ll n, ll mod)
{
ll res = ;
while (n)
{
if (n & )
res = mod_mul(res, a, mod);
a = mod_mul(a, a, mod);
n >>= ;
}
return res;
} // Miller-Rabin随机算法检测n是否为素数
bool Miller_Rabin(ll n)
{
if (n == )
return true;
if (n < || !(n & ))
return false;
ll m = n - , k = ;
while (!(m & ))
{
k++;
m >>= ;
}
for (int i = ; i <= ; i++) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - ) + ;
ll x = mod_pow(a, m, n);
ll y;
for (int j = ; j <= k; j++)
{
y = mod_mul(x, x, n);
if (y == && x != && x != n - )
return false;
x = y;
}
if (y != )
return false;
}
return true;
} ll mul(ll a, ll b, ll p)
{
ll res = ;
for(ll i = a;i <= b;i++) res = mod_mul(res, i, p);
return res;
} ll p, q;
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld", &p);
q = p-;
while(!Miller_Rabin(q)) q--;
ll inv = mod_pow(mul(q+, p-, p), p-, p);
ll ans = mod_mul(p-, inv, p);
printf("%lld\n", ans);
}
return ;
}
2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度的更多相关文章
- 2019杭电多校第三场hdu6608 Fansblog(威尔逊定理)
Fansblog 题目传送门 解题思路 Q! % P = (P-1)!/(P-1)...(Q-1) % P. 因为P是质数,根据威尔逊定理,(P-1)!%P=P-1.所以答案就是(P-1)((P-1) ...
- 牛客多校第三场 F Planting Trees
牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...
- 2019 牛客暑期多校 第三场 F Planting Trees (单调队列+尺取)
题目:https://ac.nowcoder.com/acm/contest/883/F 题意:求一个矩阵最大面积,这个矩阵的要求是矩阵内最小值与最大值差值<=m 思路:首先我们仔细观察范围,我 ...
- 2019牛客多校第三场 F.Planting Trees
题目链接 题目链接 题解 题面上面很明显的提示了需要严格\(O(n^3)\)的算法. 先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 ...
- 2019HDU多校第三场 K subsequence——最小费用最大流
题意 给定一个 $n$ 个整数的数列,从中至多选取 $k$ 个上升子序列(一个元素最多被选一次),使得选取的元素和最大. 分析 考虑这个问题和经典网络流问题“最长不下降子序列”相似,我们考虑对这个建图 ...
- [2019HDU多校第三场][HDU 6603][A. Azshara's deep sea]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6603 题目大意:给出一个凸包,凸包内有若干个圆,要求画尽可能多的对角线使得他们两两不在凸包内相交且不与 ...
- 牛客多校第三场F Planting Trees 单调栈
Planting Trees 题意 给出一个矩阵,求最大矩阵面积满足该矩阵中任2元素的绝对值之差小于等于M T<1000) (n<500)但是题目明示单组(n*3)可过 分析 又是矩阵问题 ...
- 2019年牛客多校第三场 F题Planting Trees(单调队列)
题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...
- [2019杭电多校第三场][hdu6608]Fansblog
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6608 大致题意是比p小的最大素数q,求q!%p的值. 由威尔逊定理开始推: $(p-1)!\equiv ...
随机推荐
- S12. Android 检查更新功能实现
[概述] 不需要从 App Store 或者指定官网直接下载,可以通过 App 直接更新到最新版本. [流程设计] 显示当前版本信息以及版本更新日志 提供 “检查更新” 按钮,点击事件处理逻辑: 1) ...
- 《Mysql 锁 - 概述》
一:锁类型(加锁范围区分类型) - MySQL里面的锁可以分为:全局锁.表级锁.行级锁. 二:全局锁 - 作用 - 对整个数据库实例加锁. - 加锁方式 - MySQL提供加全局读锁的方法:Flus ...
- MarkdownPad 2 用 LaTeX 编写公式(17)
方法一:(可离线显示) 1.解压「jaxedit-master.zip」,解压后找到「jaxedit-master」文件夹下「MathJax.js」文件的路径,这个文件在该文件下的路径是「jaxedi ...
- opencv实现人脸识别(一)opencv的相关知识了解
这回进行了人脸识别的项目,对学习过程进行记录. 首先进行的就是一系列环境的配置,如 python3.7的安装, python的IDE pycharm的安装,然后进行opencv库的安装,可以通过py ...
- re 模块与正则表达式
目录 re 模块 re 模块的基本使用 re 模块 正则表达式与re模块的关系 1:正则表达式是一门独立的技术. 2:正则在任何语言中均可以使用. 3:python中要想使用正则表达式需要通过re模块 ...
- GBDT笔记
GBDT笔记 GBDT是Boosting算法的一种,谈起提升算法我们熟悉的是Adaboost,它和AdaBoost算法不同: 区别如下: AdaBoost算法是利用前一轮的弱学习器的误差来更新样本权重 ...
- vuex 理解
为什么要用vuex?页面由多个视图组成,用户操作会引视图的状态变化. 多个视图依赖于同一状态(例如:菜单导航) 来自不同视图的行为需要变更同一状态(例如:评论弹幕) vuex 的作用 为vue.js开 ...
- (四)Activiti之流程定义部署之ZIP方式和流程定义查询
一.流程定义部署之ZIP方式 上一章节我们使用classpath的方式加载流程定义文件,这里我们使用ZIP的方式. 1.1 用activiti插件生成bpmn和png图片之后,压缩到一个zip格式的压 ...
- charles 的安装和手机配置 (我用的win7系统 ,和 iphone8 的配置)
2018/12/17 由于想抓一下某个手机上app的数据,然后就装了charles,纯记录一下,便于以后不用再查资料.个人参考的网址:https://blog.csdn.net/weixin_4233 ...
- Linux Centos7配置ftp服务器
一.安装 1.安装 yum install -y vsftpd 2.设置开机启动 systemctl enable vsftpd.service 3.启动 systemctl start vsftp ...