题目描述

给出nnn个666维坐标,求有多少对点对满足恰好mmm个位置相等

1&lt;=n&lt;=1051&lt;=n&lt;=10^51<=n<=105

0&lt;=k&lt;=60&lt;=k&lt;=60<=k<=6

坐标数值在2302^{30}230以内

题目分析

这道题一看就是hash容斥原理,用mmm个位置对应相等−(m+1)-(m+1)−(m+1)个位置对应相等+(m+2)+(m+2)+(m+2)个位置对应相等的…

但是不能简简单单直接+/−+/-+/−,根据广义容斥,还要乘上容斥系数CkmC_{k}^{m}Ckm​

双HashHashHash,过程中遇到Hash1Hash1Hash1相同但Hash2Hash2Hash2不同的就往后平移,用数组存一下Hash1Hash1Hash1为kkk时的Hash2Hash2Hash2值与CntCntCnt值

注意此处ModModMod数要大于nnn

考试时没用双Hash,想到了做法,奈何代码太丑,这题爆0了…

AC code
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int MAXN = 100005;
const int P1 = 137, Mod1 = 9999997;
const int P2 = 167, Mod2 = 7394895;
int num[MAXN][6], c[7][7], kase, n, m;
struct MyHash
{
LL y; int flag, cnt; //y存的是Hash1为当前下标i时的Hash2值
//flag是用int打标记,就不用每次清零了
bool Exist() { return flag == kase; }
}h[Mod1];
LL Ans;
void init()
{
for(int i = 0; i < 7; ++i)
{
c[i][0] = c[i][i] = 1;
for(int j = 1; j < i; ++j)
c[i][j] = c[i-1][j-1] + c[i-1][j];
}
} inline void MyUnique(LL &x, LL o)
{
while(h[x].Exist() && h[x].y != o) (++x) %= Mod1;
} bool used[7];
void dfs(int pos, int tot)//枚举当前是求哪几个位置
{
if(pos == 6)
{
if(tot < m) return; //小于m的不用处理
LL sum = 0; ++kase;
for(int i = 1; i <= n; ++i)
{
LL hsh1 = 0, hsh2 = 0;
for(int j = 0; j < 6; ++j) if(used[j])
hsh1 = (hsh1 * P1 % Mod1 + num[i][j]) % Mod1,
hsh2 = (hsh2 * P2 % Mod2 + num[i][j]) % Mod2;
MyUnique(hsh1, hsh2);
if(h[hsh1].flag < kase)
h[hsh1].cnt = 0, h[hsh1].flag = kase;
h[hsh1].y = hsh2, sum += (h[hsh1].cnt++);
}
Ans += sum * (((tot-m)&1) ? -1 : 1) * c[tot][m]; //容斥
return;
}
used[pos] = 1;
dfs(pos+1, tot+1);
used[pos] = 0;
dfs(pos+1, tot);
} int main ()
{
scanf("%d%d", &n, &m); init();
for(int i = 1; i <= n; ++i)
for(int j = 0; j < 6; ++j)
scanf("%d", &num[i][j]);
dfs(0, 0);
printf("%lld\n", Ans);
}

[Sdoi2013] [bzoj 3198] spring (hash+容斥原理)的更多相关文章

  1. [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】

    题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...

  2. bzoj 3198 [Sdoi2013]spring(容斥原理+Hash)

    Description Input Output Sample Input 3 3 1 2 3 4 5 6 1 2 3 0 0 0 0 0 0 4 5 6 Sample Output 2 HINT [ ...

  3. BZOJ 3198: [Sdoi2013]spring [容斥原理 哈希表]

    3198: [Sdoi2013]spring 题意:n个物品6个属性,求有多少不同的年份i,j满足有k个属性对应相等 一开始读错题了,注意是对应相等 第i个属性只能和第i个属性对应 容斥一下 \[ 恰 ...

  4. 3198: [Sdoi2013]spring【容斥原理+hash】

    容斥是ans= 至少k位置相等对数C(k,k)-至少k+1位置相等对数C(k+1,k)+至少k+2位置相等对数*C(k+2,k) -- 然后对数的话2^6枚举状态然后用hash表统计即可 至于为什么要 ...

  5. BZOJ 3198 SDOI2013 spring

    为什么SDOI省选一年考两次容斥原理? 我们很容易发现>=k个相等时很好计算的 但是我们要求恰好k个,那么我们容斥即可 至于计算>=k个相等,首先我们枚举相等位置,对每个串对应位置做一遍h ...

  6. 【BZOJ 3098】 Hash Killer II

    Description 这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题:给你一个长度为N的字符串S,求有多少个不同的长度为L的子串.子串的定义是S[l].S[l + 1].... S ...

  7. BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]

    4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...

  8. BZOJ 3771 Triple FFT+容斥原理

    解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...

  9. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

随机推荐

  1. torch.Tensor和numpy.ndarray

    1. torch.Tensor和numpy.ndarray相互转换 import torch import numpy as np # <class 'numpy.ndarray'> np ...

  2. Asp.Net Core 调用第三方Open API查询物流数据

    在我们的业务中不可避免要与第三方的系统进行交互,调用他们提供的API来获取相应的数据,那么对于这样的情况该怎样进行处理呢?下面就结合自己对接跨越速运接口来获取一个发运单完整的物流信息为例来说明如何在A ...

  3. python 2.7 环境配置

    原文地址:Python 2.7的安装(64位win10) Python 2.7.12 下载地址:https://www.python.org/downloads/ 安装路径D:\Program Fil ...

  4. git基本使用及分支切换命令

    git init 生成本地仓库 git status  查看本地文件状态,未提交的文件显示红色 git add .  (点表示提交所有文件到暂存区,也可指定部分文件到暂存区,填写指定文件名加路径即可) ...

  5. Python-02-基础知识

    一.第一个Python程序 [第一步]新建一个hello.txt [第二步]将后缀名txt改为py [第三步]使用记事本编辑该文件 [第四步]在cmd中运行该文件 print("Hello ...

  6. WUSTOJ 1333: Sequential game(Java)

    题目链接:1333: Sequential game Description Sequential detector is a very important device in Hardware ex ...

  7. nodeJs+vue安装教程详解 相信

    相信很多朋友都在装node服务和安装vue的时候会遇到一些问题,下面为大家详细介绍node服务的安装以及vue的安装: 1.nodeJs官网下载版本(根据自己电脑的配置进行相应下载即可):默认安装路径 ...

  8. 【SoloPi】SoloPi使用2-功能使用,录制回放

    Soloπ是什么Soloπ是一个无线化.非侵入式的Android自动化工具,公测版拥有录制回放.性能测试.一机多控三项主要功能,能为测试开发人员节省宝贵时间. 录制回放功能在Soloπ的录制模式对应用 ...

  9. .gitignore文件的写法

    有些时候,你必须把某些文件放到Git工作目录中,但又不能提交它们,比如保存了数据库密码的配置文件啦,等等,每次git status都会显示Untracked files .... 解决的方法就是在gi ...

  10. 大专生自学web前端到找到工作的经验

    先做个自我介绍,我13年考上一所很烂专科民办的学校,学的是生物专业,具体的学校名称我就不说出来献丑了.13年我就辍学了,我在那样的学校,一年学费要1万多,但是根本没有人学习,我实在看不到希望,我就退学 ...