洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)
P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述
In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.
Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).
As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。
贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。
输入格式
INPUT: (file grass.in)
The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000).
The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.
输入:
第一行:草场数n,道路数m。
以下m行,每行x和y表明有x到y的单向边,不会有重复的道路出现。
输出格式
OUTPUT: (file grass.out)
A single line indicating the maximum number of distinct fields Bessie
can visit along a route starting and ending at field 1, given that she can
follow at most one path along this route in the wrong direction.
输出:
一个数,逆行一次最多可以走几个草场。
输入输出样例
输入 #1复制
输出 #1复制
说明/提示
SOLUTION NOTES:
Here is an ASCII drawing of the sample input:
v---3-->6
7 | \ |
^\ v \|
| \ 1 |
| | v
| v 5
4<--2---^
Bessie can visit pastures 1, 2, 4, 7, 2, 5, 3, 1 by traveling
backwards on the path between 5 and 3. When she arrives at 3 she
cannot reach 6 without following another backwards path.
思路:
首先用tarjian缩点,缩点后是一个有向无环图。每一个点的点权是他所在的SCC中节点的个数。
然后从一号节点所在的scc块进行SPFA找最长路,可以得到dis1[i] 代表从1所在联通块为始点走到scc_i的最大权值。
然后反向建边跑最长路,可以得到dis1[i] 代表从i所在联通块scc_i为始点,scc_1 为终点的最大权值。
然后枚举所有scc_i,如果scc_1可以到达scc_i,且 有scc_j为起点到scc_i 为终点的边,scc_j可以到达scc_1,则尝试逆行该边,更新答案,维护最大值。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 500010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int From[maxn], Laxt[maxn], To[maxn << 2], Next[maxn << 2], cnt;
int low[maxn], dfn[maxn], times, qq[maxn], head, scc_cnt, scc[maxn];
bool inst[maxn];
vector<int>G[maxn];
void add(int u, int v)
{
Next[++cnt] = Laxt[u]; From[cnt] = u;
Laxt[u] = cnt; To[cnt] = v;
}
int c[maxn];
void tarjan(int u)
{
dfn[u] = low[u] = ++times;
qq[++head] = u;
inst[u] = 1;
for (int i = Laxt[u]; i; i = Next[i]) {
if (!dfn[To[i]]) {
tarjan(To[i]);
low[u] = min(low[u], low[To[i]]);
} else if (inst[To[i]]) {
low[u] = min(low[u], dfn[To[i]]);
}
}
if (low[u] == dfn[u]) {
scc_cnt++;
while (true) {
int x = qq[head--];
scc[x] = scc_cnt;
c[scc_cnt]++;
inst[x] = 0;
if (x == u) { break; }
}
}
}
int n, m;
std::vector<int> v1[maxn], v2[maxn];
int dis1[maxn];
int dis2[maxn];
queue<int> q;
bool vis[maxn];
void spfa1(int S)
{
dis1[S] = c[S];
q.push(S);
while (!q.empty())
{
int now = q.front();
q.pop();
for (auto y : v1[now])
{
if (dis1[y] < dis1[now] + c[y])
{
dis1[y] = dis1[now] + c[y];
if (!vis[y])
{
q.push(y);
vis[y] = 1;
}
}
}
vis[now] = 0;
}
}
void spfa2(int S)
{
dis2[S] = c[S];
q.push(S);
while (!q.empty())
{
int now = q.front();
q.pop();
for (auto y : v2[now])
{
if (dis2[y] < dis2[now] + c[y])
{
dis2[y] = dis2[now] + c[y];
if (!vis[y])
{
q.push(y);
vis[y] = 1;
}
}
}
vis[now] = 0;
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du2(n, m);
while (m--)
{
int x, y;
du2(x, y);
add(x, y);
}
repd(i, 1, n)
{
if (!dfn[i])
{
tarjan(i);
}
}
repd(u, 1, n)
{
for (int i = Laxt[u]; i; i = Next[i])
{
if (scc[u] != scc[To[i]])
{
// cout<<u<<" "<<To[i]<<" "<<scc[u]<<" "<<scc[To[i]]<<endl;
v1[scc[u]].push_back(scc[To[i]]);
v2[scc[To[i]]].push_back(scc[u]);
}
}
}
spfa1(scc[1]);
spfa2(scc[1]);
int ans = c[scc[1]];
repd(i, 1, scc_cnt)
{
if (vis[i] == 0 && dis1[i])
{
vis[i] = 1;
for (auto y : v2[i])
{
if (!dis2[y])
continue;
ans = max(ans, dis1[i] + dis2[y] - c[scc[1]]);
}
}
}
printf("%d\n", ans);
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)的更多相关文章
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...
- 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...
- 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur
http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur
屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...
- 洛谷3119 [USACO15JAN]草鉴定Grass Cownoisseur
原题链接 显然一个强连通分量里所有草场都可以走到,所以先用\(tarjan\)找强连通并缩点. 对于缩点后的\(DAG\),先复制一张新图出来,然后对于原图中的每条边的终点向新图中该边对应的那条边的起 ...
- P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- 洛谷P3119 USACO15JAN 草鉴定
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路
https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...
随机推荐
- QFramework 使用指南 2020(八):Res Kit(2)模拟模式与非模拟模式
在上一篇,介绍了 Res Kit 的基本使用,相信大家已经体会到了 Res Kit 的简便之处了. 在这一篇,我们试着探讨一下 Res Kit 的设计背后原理. AssetBundle 的不便之处 在 ...
- redis的事物操作
- fastadmin cms使用注意一
addon和application还有前端配置后还需要 注意表配置
- MapReduce 框架原理
1. Hadoop 序列化 1.1 自定义Bean对象实现序列化接口 必须实现 Writable 接口: 反序列化时,需要反射调用空参构造函数,所以必须有空参构造: 重写序列化方法: 重写反序列化方法 ...
- poj2318(叉积判断点在直线左右+二分)
题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...
- [Agc030B]Tree Burning_贪心
Tree Burning 题目链接:https://atcoder.jp/contests/agc030/tasks/agc030_b 数据范围:略. 题解: 开始以为是左右左右这样,发现过不去样例. ...
- mysql中的反引号``
[1]反引号`,数字1左边的符号.tab键上面的符号. 它是为了区分MYSQL的保留字与普通字符而引入的符号. 不加反引号建的表不能包含MYSQL保留字,否则出错 如上图,很明显的,如果我们直接建立名 ...
- Linux Shell中的变量声明和一些特殊变量
在SHELL中定义变量比较直接,无类型区别,不需要像Java那样定义好是String还是int等. 声明变量需要遵守或者注意的几点: 变量名和等号之间不能有空格. 变量名首字符必须为字母. 变量名里可 ...
- [转载]ASP.NET Core文件上传与下载(多种上传方式)
ASP.NET Core文件上传与下载(多种上传方式) 前言 前段时间项目上线,实在太忙,最近终于开始可以研究研究ASP.NET Core了. 打算写个系列,但是还没想好目录,今天先来一篇,后面在 ...
- linux利用crontab添加定时任务详解
crontab 作用:添加,查询,删除系统计划任务的指令. [root@localhost ~]# crontab [选项]选项: -e: 编辑crontab定时任务 -l: ...