ZR#959

解法:

对于一个询问,设路径 $ (u, v) $ 经过的所有边的 $ gcd $ 为 $ g $,这可以倍增求出。

考虑 $ g $ 的所有质因子 $ p_1, p_2, \cdots , p_k $ ,因为 $ g \leq 10^6 $ ,所以 $ k \leq 7 $ 。

则最终的路径的 $ gcd $ 为 $ 1 $,等价于对于每个 $ 1 \leq i \leq k $ ,存在至少一条路径上的边不是 $ p_i $ 的倍数。我们要求 $ l $ 的最小值,即等价于对于每个 $ 1 \leq i \leq k $ ,计算出最长的不满足条件的 $ l′ $,则最终答案即为所有 $ i $ 对应的 $ l′ $ 的最大值加一(无解的情况除外)。

考虑对于某个 $ p_i $ 而言,我们如何求出这样的 $ l′ $ 。我们考虑将所有满足 $ p_i | w $的边拿出来,并只保留这些边。则 $ l′ $ 等价于在这样得到的森林中,经过 $ (u, v) $ 的最长路径。

使用简单的树形DP即可求出某个点向子树方向以及向祖先方向延伸的最长路径,分类讨论即可对于每个 $ (u, v) $ 求出对应的 $ l′ $ 。

接下来考虑无解的情况。事实上,无解等价于刚刚求出的某个 $ l′ $ 和经过 $ (u, v) $ 的最长路径相同。经过 $ (u, v) $ 的最长路径和刚刚是同样的问题,直接对整棵树都做一遍树形 DP 即可。

接下来考虑复杂度。求出每个询问的 $ gcd $ 的复杂度为 $ O(q \log_2 n \log_2 w) $ ,而求出最长路的部分是与边数成线性的,而每条边至多出现 $ 7 $ 次,因此该做法的总复杂度即为 $ O(q \log_2 n \log_2 w + nω(w)) $ 。

CODE:

//9.10补全
#pragma GCC optimize(2)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath> using namespace std; #define LL long long const int N = 2e5 + 100;
const int V = 2e6 + 100;
const int M = 18; struct Edge {
int to,from;
int data;
}e[N<<1]; int head[N],cnt,tot,n,q;
int f[M + 1][N],g[M + 1][N];
int prime[V],d[V],deep[N];
bool p[V]; inline void prework() {
d[1] = 1;
for(int i = 2 ; i <= V - 1 ; i++) {
if(!p[i]) prime[++tot] = i,d[i] = i;
for(int j = 1 ; j <= tot && i * prime[j] < V ; ++j) {
p[i * prime[j]] = true;
d[i * prime[j]] = prime[j];
if(!(i % prime[j])) break;
}
}
}
inline void add_edge(int x,int y,int z) {
e[++cnt].from = y;
e[cnt].data = z;
e[cnt].to = head[x];
head[x] = cnt;
}
inline int gcd(int a,int b) {
return !b ? a :gcd(b,a % b);
}
inline void dfs(int v,int fa) {
for(int i = 1 ; i <= M ; i++) {
f[i][v] = f[i - 1][f[i - 1][v]];
g[i][v] = gcd(g[i - 1][v],g[i - 1][f[i - 1][v]]);
}
for(int i = head[v] ; i ; i = e[i].to) {
if(e[i].from == fa) continue;
f[0][e[i].from] = v;
g[0][e[i].from] = e[i].data;
deep[e[i].from] = deep[v] + 1;
dfs(e[i].from,v);
}
}
inline int LCA(int x,int y) {
if(deep[x] != deep[y]) {
if(deep[x] < deep[y]) swap(x,y);
int dis = deep[x] - deep[y];
for(int i = 0 ; i <= M ; i++) {
if((1 << i) & dis) x = f[i][x];
}
}
if(x == y) return x;
for(int i = M ; i >= 0 ; i--) {
if(f[i][x] == f[i][y]) continue;
x = f[i][x],y = f[i][y];
}
return f[0][x];
}
inline int cal(int x,int y) {
if(deep[x] < deep[y]) swap(x,y);
int d = deep[x] - deep[y],ans = 0;
for(int i = 0 ; i <= M ; i++) {
if((1<<i)&d) {
ans = gcd(g[i][x],ans);
x = f[i][x];
}
}
return ans;
}
inline int calc(int x,int y) {
int l = LCA(x,y);
return gcd(cal(l,x),cal(l,y));
}
inline int dp(int v,int fa,int d) {
int ans = 0;
for(int i = head[v] ; i ; i = e[i].to) {
if(e[i].from == fa) continue;
if(e[i].data % d) continue;
ans = max(ans,dp(e[i].from,v,d)+1);
}
return ans;
}
inline int kth(int v,int k) {
for(int i = 0 ; i <= M ; i++) {
if((1 << i) & k) v = f[i][v];
}
return v;
}
inline int dis(int x,int y) {
return deep[x] + deep[y] - deep[LCA(x,y)] * 2;
}
inline int read() {
int x = 0, f = 1;
char ch = getchar();
while(ch < '0' || ch > '9') {if (ch == '-')f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
return x * f;
} int main() {
prework();
n = read(),q = read();
for(int i = 1 ; i < n ; i++) {
int u = read(),v = read(),z = read();
add_edge(u,v,z);
add_edge(v,u,z);
}
dfs(1,0);
while(q--) {
int x = read(),y = read();
int l = LCA(x,y),g = calc(x,y);
if(g == 1) {
printf("%d \n",dis(x,y));
continue;
}
int fx = f[0][x],fy = f[0][y];
if(l == x) fx = kth(y,deep[y] - deep[x] - 1);
else if(l == y) fy = kth(x,deep[x] - deep[y] - 1); // 限制不走相同的子树
int mxdis = dp(x,fx,1) + dp(y,fy,1);
int ans = 0;
while(g != 1) {
int p = d[g];
ans = max(ans,dp(x,fx,p) + dp(y,fy,p));
if(ans == mxdis) break;
while(!(g % p)) g /= p;
}
printf("%d\n",ans == mxdis ? -1 : ans + dis(x,y) + 1);
}
//system("pause");
return 0;
}

ZR#959的更多相关文章

  1. CF 959 E. Mahmoud and Ehab and the xor-MST

    E. Mahmoud and Ehab and the xor-MST https://codeforces.com/contest/959/problem/E 分析: 每个点x应该和x ^ lowb ...

  2. IMP-00003: 遇到 ORACLE 错误 959 ORA-00959: 表空间 '' 不存在

    描述 在使用imp命令将dmp文件导入oracle中时,遇到如下错误: IMP: 遇到 ORACLE 错误 ORA: 表空间 'TBS_CDUSER' 不存在 IMP命令如下: IMP cduser/ ...

  3. ZR#1005

    ZR#1005 解法: 题解给了一个建图跑最短路的做法,但好像没有必要,因为 $ m $ 没有用,所以直接上完全背包就行了. CODE: #include<iostream> #inclu ...

  4. ZR#1004

    ZR#1004 解法: 对于 $ (x^2 + y)^2 \equiv (x^2 - y)^2 + 1 \pmod p $ 化简并整理得 $ 4x^2y \equiv 1 \pmod p $ 即 $ ...

  5. ZR#1009

    ZR#1009 解法: 因为无敌的SR给了一个大暴力算法,所以通过打表发现了了一些神奇的性质,即第一行和第一列的对应位置数值相等. 我们可以通过手算得出 $ F(n) = \frac{n(n + 1) ...

  6. ZR#1008

    ZR#1008 解法: 直接预处理出来执行完一个完整的串可以到达的位置,然后算出重复的次数直接乘在坐标上,最后处理一下余下的部分就行了. CODE: #include<iostream> ...

  7. ZR#1015

    ZR#1015 解法: 我们需要求得, $ g_i $ 表示长度为的最长不下降子序列个数. 设 $ f_{i,j} $ 表示统计第前$ i $ 个数字,得到最长不下降子序列末端为 $ j $ . 显然 ...

  8. ZR#1012

    ## ZR#1012 blog咕咕咕了好久,开始补. 解法: 一个很显然的性质, $ x $ 只能转移到 $ x+1 $ 或者 $ 2x $ 处,所以我们可以以此性质建图,即 $ x $ 向 $ x ...

  9. ZR#985

    ZR#985 解法: 可以先假设每个区间中所有颜色都出现,然后减掉多算的答案.对每种颜色记录它出现的位置,则相邻两个位置间的所有区间都要减去,时间复杂度 $ O(n) $ . 其实可以理解为加法原理的 ...

随机推荐

  1. 【ES6】数组的扩展

    1.Array.from(): 将伪数组对象和遍历的对象转为真数组 如果一个对象的键都是正整数或者0,并且有 Length属性,那么这个对象很想数组,称它为伪数组. 伪数组: let obj = { ...

  2. wget的url获取方式

    获取方式 每次用wget都是在网上查相应的url,但以前没怎么关注过这个url是怎么获取到的,这里总结一下 这里以下载jekins为例: 打开jekins网站:https://jenkins.io/d ...

  3. 一、zuul如何路由到上游服务器

    所有文章 https://www.cnblogs.com/lay2017/p/11908715.html 正文 zuul在分布式项目中充当着一个网关的角色,而它最主要的功能像nginx一样针对上游服务 ...

  4. 自定义标签之inclusion_tag

    1.在当前app下创建templatetags文件夹 2.在templatetags文件夹下面创建自定义的mytag.py文件 3.在mytag.py文件中的代码 from django.templa ...

  5. 用D3js的区域生成器实现简单波浪图

    最近做控件遇到含有波浪图的图表,一开始用Echarts虽然很快完成了,但Echarts的波浪图与其他图表的响应式不同步,于是学习了D3js,D3js写起来确实复杂一些,但能够实现的效果也更丰富,做的时 ...

  6. MySQL基础篇

    数据库基础知识 以MySQL为基础 数据库事务 :数据库中一组原子性的SQL操作,彼此状态一致.具有ACID特性. 事务 ACID 特性: 原子性:数据库事务是一个整体,其中的SQL操作要么全部提交成 ...

  7. HBase分布式搭建常见错误

    [root@node001 bin]# hbase shell SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found bin ...

  8. java - day019 - 反射

    网络程序,难点在线程 反射 reflect 实用 类对象 来执行反射操作 反射获得一个类的定义信息 反射创建对象 反射调用成员变量, 方法 方法 获得类对象的三种方式 A.class Class.fo ...

  9. git使用——忽略文件

    一般我们总会有些文件无需纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表. 通常都是些自动生成的文件,比如日志文件,或者编译过程中创建的临时文件等.git下有2种方式实现忽略文件的目的.方法一 ...

  10. Windows server 2012 利用ntdsutil工具实现AD角色转移及删除域控方法

    场景1:主域控制器与辅助域控制器运行正常,相互间可以实现AD复制功能.需要把辅助域控制器提升为主域控制器 ,把主域控制器降级为普通成员服务器:这种场景一般应用到原主域控制器进行系统升级(先转移域角色, ...