目标检测coco数据集点滴介绍

1.  COCO数据集介绍

MS COCO 是google 开源的大型数据集, 分为目标检测、分割、关键点检测三大任务, 数据集主要由图片和json 标签文件组成。 coco数据集有自带COCO API,方便对json文件进行信息读取。本博客介绍是目标检测数据集格式的制作。

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), 和image captions(看图说话),使用JSON文件存储。

2.  MSCOCO数据集数据结构{

"images":

[

{"file_name":"cat.jpg","id":1,"height":1000,"width":1000},

{"file_name":"dog.jpg","id":2,"height":1000,"width":1000},

...

]

"annotations":

[

{"image_id":1,"bbox":[100.00,200.00,10.00,10.00],"category_id":1}

{"image_id":2,"bbox":[150.00,250.00,20.00,20.00],"category_id":2}

...

]

"categories":

[

{"id":0,"name":"bg"}

{"id":1,"name":"cat"}

{"id":1,"name":"dog"}

...

]

}

标注文件中,"images" 关键字对应图片信息,"annotations" 关键字对应标注信息,"categories" 对应类别信息: "images": 该关键字对应的数据中,每一项对应一张图片,"file_name"对应图片名称,"id"对应图片序号,"height"和"width"分别对应图像的高和宽。 "annotations": 该关键字对应的数据中,每一项对应一条标注,"image_id"对应图片序号,"bbox"对应标注矩形框,顺序为[x, y, w, h],分别为该矩形框的起始点x坐标,起始点y坐标,宽、高。"category_id"对应类别序号。 "categories": 该关键字对应的数据中,每一项对应一个类别,"id"对应类别序号,"name"对应类别名称。

关键字关联说明: 1."annotations"中的元素通过"image_id"关联图像,比如"image_id":2,该条标注信息对应"images"中"id"为2的图像。 2."annotations"中的元素通过"category_id"关联类别,比如"category_id":2,该条标注信息对应"categories"中"id"为2的类别。

例: 在上面列出的数据结构中

这条标注信息通过"image_id"可以找到对应的图像为"cat.jpg",通过"category_id"可以找到对应的类别为"cat"

背景图片说明:
"annotations"中的元素,"category_id":0对应的是背景。当且仅当一张图片对应的所有annotations中,"category_id"都为0,该图片为背景图片。

3.  COCO数据集json文件,分类和id

coco目标检测数据集标注目标信息采用的是数据格式是json,其内容本质是一种字典结构,字典堆栈和列表信息内容维护。

coco里面的id和类名字对应:总共80类,但id号到90!

coco_id_name_map={1: 'person', 2:
'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane',                   6: 'bus', 7: 'train', 8:
'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign',
14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19:
'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25:
'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33:
'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sports ball', 38:
'kite', 39: 'baseball bat', 40: 'baseball glove', 41: 'skateboard', 42:
'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup',
48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple',
54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59:
'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant',
65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74:
'mouse', 75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79:
'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock',
86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90:
'toothbrush'}

打开json文件:

with open(json_path,'r') as load_f:

load_dict =
json.load(load_f)

里面协议是这样的,annotations下面是每一个box的标注信息,包括分割的,当前框使用目标框,image_id,categogy_id。

因此要想获得整个数据集信息,必须遍历整个box信息,将其进行统计分配。

4.  COCO数据集性能指标

COCO 提供了 12 种用于衡量目标检测器性能的评价指标.

Recall   召回率(查全率)。表示正确识别物体A的个数占测试集中物体A的总个数的百分数Recall = TP / (TP+FN)

Precision
精确率(查准率)。表示正确识别物体A的个数占总识别出的物体个数n的百分数Precision
= TP / (TP+FP)

fp
:false positive误报,即预测错误

fn
:false negative漏报,即没有预测到

tp:true
positive

tn:true
negative

iou:intersection-over-union

Accuracy  准确率。正确分类的样本数除以所有的样本数,正确率越高,分类器越好。Accuracy=(TP+TN)/
(TP+TN+FP+FN)

以上介绍都是基于2分类的,并不是多分类的

以下12个指标用于表征COCO上物体检测器的性能:

Average Precision (AP):

AP                              % AP at
IoU=0.50:0.05:0.95 (primary challenge metric)

APIoU=.50                   % AP at IoU=0.50 (PASCAL VOC
metric)

APIoU=.75                   % AP at IoU=0.75 (strict
metric)

AP
Across Scales:

APsmall                       % AP for small objects:
area < 322

APmedium                   % AP for medium objects: 322
< area < 962

APlarge                        % AP for large objects:
area > 962

Average
Recall (AR):

ARmax=1                     % AR given 1 detection per
image

ARmax=10                   % AR given 10 detections per
image

ARmax=100                 % AR given 100 detections per
image

AR
Across Scales:

ARsmall                       % AR for small objects: area < 322

ARmedium                   % AR for medium objects: 322
< area < 962

ARlarge                        % AR for large objects:
area > 962

目标检测coco数据集点滴介绍的更多相关文章

  1. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  2. faster-rcnn 目标检测 数据集制作

    本文的目标是制作目标检测的数据集 使用的工具是 python + opencv 实现目标 1.批量图片重命名,手动框选图片中的目标,将目标框按照一定格式保存到txt中 图片名格式(批量) .jpg . ...

  3. FAIR开源Detectron:整合全部顶尖目标检测算法

    昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台. 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标 ...

  4. 目标检测(六)YOLOv2__YOLO9000: Better, Faster, Stronger

    项目链接 Abstract 在该论文中,作者首先介绍了对YOLOv1检测系统的各种改进措施.改进后得到的模型被称为YOLOv2,它使用了一种新颖的多尺度训练方法,使得模型可以在不同尺寸的输入上运行,并 ...

  5. [炼丹术]YOLOv5目标检测学习总结

    Yolov5目标检测训练模型学习总结 一.YOLOv5介绍 YOLOv5是一系列在 COCO 数据集上预训练的对象检测架构和模型,代表Ultralytics 对未来视觉 AI 方法的开源研究,结合了在 ...

  6. AI佳作解读系列(五) - 目标检测二十年技术综述

    计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注.   上周四,arXiv新出一篇目标检测文献<Object Detection ...

  7. GPU端到端目标检测YOLOV3全过程(上)

    GPU端到端目标检测YOLOV3全过程(上) Basic Parameters: Video: mp4, webM, avi Picture: jpg, png, gif, bmp Text: doc ...

  8. DeepLearning.ai学习笔记(四)卷积神经网络 -- week3 目标检测

    一.目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义. 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedestrian,car, ...

  9. 目标检测算法(2)SPP-net

    本文是使用深度学习进行目标检测系列的第二篇,主要介绍SPP-net:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual R ...

随机推荐

  1. 033- while循环语句

    语法 初始化语句; while(boolean表达式) { 循环体语句; 控制条件语句; } 执行过程: 只要boolean表达式里面的结果是true,就会执行while大括号里面的语句,直到bool ...

  2. 12- winmerge讲解

    WinMerge是一款运行于Windows系统下的免费开源的文件比较/合并的工具,使用它可以非常方便的比较多个文档内容设置是文件夹与文件夹之间的差异.适合程序员或者经常撰写文稿的朋友使用.

  3. 深入学习Android系统上mount命令的使用

    博客链接:http://blog.csdn.net/qq1084283172/article/details/52493227 在Android系统的预装apk病毒和elf病毒的清除时,经常需要先获取 ...

  4. Python脚本与Metasploit交互进行自动永恒之蓝攻击

    我们首先利用 findTarget() 函数找到目标网段或目标主机中开放了445端口的主机,然后利用 confickerExploit() 函数将攻击代码写入 configure.rc 配置文件中,最 ...

  5. Scoring System

    ‍Build a scoring system , give the score by referee , and entering the score in system , then take o ...

  6. (转)如何优雅的使用rabbit mq

    RabbitMQ无疑是目前最流行的消息队列之一,对各种语言环境的支持也很丰富,作为一个.NET developer有必要学习和了解这一工具.消息队列的使用场景大概有3种: 1.系统集成,分布式系统的设 ...

  7. .NET平台系列8 .NET Core 各版本新功能

    系列目录     [已更新最新开发文章,点击查看详细] .NET Core 自2016年6月27日发布第一个正式版本以来,它主打的跨平台和高性能特效吸引了许多开发者,包括Java.PHP等语言的开发者 ...

  8. 安装SpecCPU2006 on Linux of CentOS6.3, gcc4.4.7

    安装SpecCPU2006 on Linux of CentOS6.3, gcc4.4.7 由于在tools/bin目录中只有ia64-linux,所以在直接运行./install.sh脚本时,系统会 ...

  9. Linux_控制服务与守护进程

    一.systemd 1.systemd简介 1️⃣:systemd是用户空间的第一个应用程序,即/sbin/init 2️⃣:init程序的类型: SysV风格:init(centos5),实现系统初 ...

  10. 创建第一个django工程

    一.环境搭建 使用anaconda + pycharm的环境. 1.创建虚拟环境并安装django1.8的包 # 创建虚拟环境 conda create -n django python=3.6 # ...