感觉自己学 SAM 的时候总有一种似懂非懂、云里雾里、囫囵吞枣、不求甚解的感觉,是时候来加深一下对确定性有限状态自动机的理解了。

  1. 从 SAM 的定义上理解:SAM 可以看作一种加强版的 Trie,它可以高度压缩一个字符串的子串信息,一条从根出发到终止结点的路径对应了原串的一个后缀,而任意一个从根出发的路径对应了原串一个子串。子串和从根出发的路径一一对应。在这种的理解下,每一个结点的含义并不是固定的,它到底对应哪个子串取决于那条路径是怎么到达它的;而边有着确定的含义。

  2. 从 Parent Tree 的角度去理解连边的含义:显然等价类的个数是 \(\Theta(n)\) 级别的,并且两个不同等价类的 \(\texttt{Endpos}\) 集合要么无交集,要么相包含,因此可以建出一个由 \(\texttt{Endpos}\) 集合的包含关系连结而成的树——Parent Tree,它的连边——后缀链接,若是向下看,是在一个等价类的前面加上一个字符,从而分成若干的其他等价类;向上看,它是指向包含当前集合的最小的集合;而后缀自动机的连边是在一个等价类的后面加上一个字母,看看它会指向谁,显然对于同一个添上的字母,这个指向是唯一确定的。

  3. 从结点的含义去理解:虽然一个点它并不一定对应哪一个子串,但是它对应的若干子串一定有一个共同的 \(\texttt{Endpos}\),也就是说,若长的那个存在了,短的那些一定是它的子串;短的出现了,那么它向前一些一定是那些长的。由于上面的结论,"本质"不同的子串的个数是线性的,因此我们建立这样一个自动机,其中的每一个结点都对应了一种子串。这也是为什么 Parent Tree 的结点与 SAM 的结点一一对应。

  4. 关键在于上面的这些理解是同时成立的,可以把 Parent Tree 上获得的信息用作 SAM 信息的补充;两者相得益彰,互相成就。

来看一道例题:P3975 [TJOI2015]弦论,大意是多次询问一个串的字典序第 \(k\) 小子串,分为要求本质不同和不要求本质不同的两种。

显然我们只需要使用类似二叉查找树的那种方法就行了,因此问题转化为了求一个结点后面有多少种子串;如果要求本质不同,那么就在自动机上拓扑 DP 一下就行了,因为自动机会自动合并本质相同的子串;如果不要求呢?那么就需要结合第三种理解,我可以在后缀树上求出每个节点对应的子树内叶子节点出现次数的总和,显然这个就是这个结点的出现次数——一个等价类的出现次数等于它的孩子们出现次数的和,而叶子节点的出现次数一定是和 SAM 一起建出来的。而一个结点的后面的出现次数 \(f_x = sze_x + \sum\limits_{t:ch_x}f_t\),这个由加法原理得到。这就引出了一个点的 \(\texttt{Endpos}\) 集合大小的另一个含义——若从根遍历到这个结点的路径,它究竟有多少种结束方式

main():
for (int i = 1; i <= cnt; i++) c[len[i]]++;
for (int i = 1; i <= cnt; i++) c[i] += c[i - 1];
for (int i = 1; i <= cnt; i++) a[c[len[i]]--] = i;
for (int i = cnt; i; i--) if (t)
sze[fa[a[i]]] += sze[a[i]]; else sze[a[i]] = 1;
sze[1] = 0; for (int i = cnt; i; i--)
{
f[a[i]] = sze[a[i]]; for (int j = 0; j < 26; j++)
f[a[i]] += f[ch[a[i]][j]];
}

这里提到一件争议: P2336 [SCOI2012]喵星球上的点名 这题 @fighter_OI 的题解下由两位金钩大佬提出了意见——一个说这个可以被卡到 \(n\sqrt n\),一个说这个可以优化到 \(n\log n\);事实上,我认为这个已经是线性的了,不存在什么 \(n\sqrt n\) 什么 \(\log\) 的问题。我们看这样的代码:

inline void update1(int x, int y)
{
for (; x && las[x] != y; x = fa[x]) sze[x]++, las[x] = y;
} inline void build()
{
.....blabla
tot = 0; for (int i = 1; i <= n; i++)
{
for (int j = 1, p = 1; j <= l1[i]; j++) update1(p = ch[p][s[++tot]], i);
for (int j = 1, p = 1; j <= l2[i]; j++) update1(p = ch[p][s[++tot]], i);
}

虽然这样的代码看似是在暴力,看似可以被卡,但是实际上,它只是补充不漏地遍历了每个子串的所有“本质”不同子串,“不同字串” 的个数又是线性的,所以总的复杂度是 \(\sum|S_i|\),依然是线性的。甚至改成这样也一样能过:

inline void update1(int x, int y)
{
for (; x; x = fa[x]) if (las[x] != y) sze[x]++, las[x] = y;
}

事实证明,对于比较难以维护的信息,我们完全可以遍历一个串的每个“子串”来暴力添加上信息,这么做的复杂度依然是和输入量呈线性的。

UPD:下面的这种写法是错误的,是 \(O(\frac 14 n^2)\) 级别的(用 000000001111111这样的串卡掉),而前面的写法是线性的。

对 SAM 和 PAM 的一点理解的更多相关文章

  1. opencv笔记5:频域和空域的一点理解

    time:2015年10月06日 星期二 12时14分51秒 # opencv笔记5:频域和空域的一点理解 空间域和频率域 傅立叶变换是f(t)乘以正弦项的展开,正弦项的频率由u(其实是miu)的值决 ...

  2. 对socket的一点理解笔记

    需要学web service,但是在视频中讲解到了socket套接字编程.以前貌似课上老师有提过,只是没用到也感觉乏味.现在遇到,自己看了些博客和资料.记录一点理解,不知正确与否. 首先说这个名字,叫 ...

  3. iOS 的一点理解(一) 代理delegate

    做了一年的iOS,想记录自己对知识点的一点理解. 第一篇,想记录一下iOS中delegate(委托,也有人称作代理)的理解吧. 故名思议,delegate就是代理的含义, 一件事情自己不方便做,然后交 ...

  4. 关于web开发的一点理解

    对于web开发上的一点理解 1 宏观上的一点理解 网页从请求第地址 到获得页面的过程:从客户端(浏览器)通过地址 从soket把请求报文封装发往服务端   服务端通过解析报文并处理报文最后把处理的结果 ...

  5. angular.js的一点理解

    对angular.js的一点理解 2015-01-14 13:18 by MrGeorgeZhao, 317 阅读, 4 评论, 收藏, 编辑 最近一直在学习angular.js.不得不说和jquer ...

  6. RxSwift 入坑好多天 - 终于有了一点理解

    一.前言 江湖上都在说现在就要赶紧学 swift 了,即将是 swift 的天下了.在 api 变化不大的情况下,swift 作为一门新的语言,集众家之所长,普通编码确实比 oc 要好用的多了 老早就 ...

  7. rt-thread中动态内存分配之小内存管理模块方法的一点理解

    @2019-01-18 [小记] rt-thread中动态内存分配之小内存管理模块方法的一点理解 > 内存初始化后的布局示意 lfree指向内存空闲区首地址 /** * @ingroup Sys ...

  8. rt-thread中软件定时器组件超时界限的一点理解

    @2019-01-15 [小记] 对 rt-thread 中的软件定时器组件中超时界限的一点理解 rt_thread_timer_entry(void *parameter)函数中if ((next_ ...

  9. mycat的schema.xml的个人的一点理解

    官方文档里讲的详细的部分的我就不再赘述了,我只是谈谈我自己的理解 刚开始接触mycat,最重要的几个配置文件有server.xml,schema.xml,还有个rule.xml配置文件 具体都是干啥用 ...

随机推荐

  1. vue3.x组件间通信,实用小技巧都在这里

    本想简单写写,没想到说清楚已经变成了一篇很长的帖子,欢迎当笔记搜藏起来. props / emits 父子组件通信 props一般负责向子组件传递数据 下面是一个简单的例子,父组件向子组件传递了一个t ...

  2. 第五课第四周实验一:Embedding_plus_Positional_encoding 嵌入向量加入位置编码

    目录 变压器预处理 包 1 - 位置编码 1.1 - 位置编码可视化 1.2 - 比较位置编码 1.2.1 - 相关性 1.2.2 - 欧几里得距离 2 - 语义嵌入 2.1 - 加载预训练嵌入 2. ...

  3. 欧姆龙PLC HostLink协议整理

    欧姆龙PLC HostLink协议整理 1.常用的存储器功能区 CIO: 输入继电器  272 点(17 CH) 0.00-16.15 输出继电器  272 点(17 CH) 100.00-116.1 ...

  4. [对对子队]会议记录5.15(Scrum Meeting2)

    今天已完成的工作 吴昭邦 ​ 工作内容:衔接循环指令系统,搭建第4关 ​ 相关issue:实现循环组件 ​ 相关签入:feat: 将模型加入第四关 第四关可以顺利通过 何瑞 ​ 工作内容:衔接循环指令 ...

  5. Linux该如何学习新手入门遇到问题又该如何解决

    本节旨在介绍对于初学者如何学习 Linux 的建议.如果你已经确定对 Linux 产生了兴趣,那么接下来我们介绍一下学习 Linux 的方法. 如何去学习 学习大多类似庖丁解牛,对事物的认识一般都是由 ...

  6. CF #749

    A 题意 有个长度为n的序列, 每个数互不相同, 求总和最大的最长子序列, 并输出每个i: 题解 emmmmmm, 刚开始看到这个数据和题解被迷惑了, 以为有什么顺序, 并且一直在想一些复杂度较高的算 ...

  7. hdu 2199 Can you solve this equation?(二分法求多项式解)

    题意 给Y值,找到多项式 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y 在0到100之间的解. 思路 从0到100,多项式是单调的,故用二分法求解. 代码 double c ...

  8. Swarm+Docker+Portainer(集群,图形化)

    参考文章 https://blog.csdn.net/u011781521/article/details/80469804 https://blog.csdn.net/u011781521/arti ...

  9. VNC服务器的搭建(带图形化支持)

    环境:centos7.6最小化安装 图形化支持 如果希望安装简单的图形支持的话,仅包含gnome的最最最最基础的包的话可以使用以下命令 yum groups install "X Windo ...

  10. Pod 生命周期和重启策略

    Pod 在整个生命周期中被系统定义为各种状态,熟悉 Pod 的各种状态对于理解如何设置 Pod 的调度策略.重启策略是很有必要的. Pod 的状态 状态值 描述 Pending API Server ...