Atcoder 题面传送门 & 洛谷题面传送门

Yet another AGC F,然鹅这次就没能自己想出来了……

首先需注意到题目中有一个条件叫做“黑格子组成的连通块是四联通的”,这意味着我们将所有黑格都替换为题目中 \(H\times W\) 的标准型之后,黑格(标准型)内部是不会对连通块个数产生贡献的,产生贡献的只可能是黑格与黑格之间的边不产生连通块。如果我们记 \(G_{\text{h}}\) 两个标准型横着拼在一起得到的 \(H\times 2W\) 的图形,\(G_{\text{v}}\) 为两个标准型竖着拼在一起得到的 \(2H\times W\) 的图形,那么稍微分析一下即可得到以下性质:

  • 如果 \(G_{\text{h}},G_{\text{v}}\) 中都只有一个连通块,那么最终得到的 \(k\) 级分形也只有一个连通块。因为对于原来的标准型中的相邻两个黑格,由于 \(G_{\text{h}},G_{\text{v}}\) 连通,所以将这两个黑格分别替换为标准型后,这两个黑格所表示的连通块依旧连通,又因为这个标准型本来就是连通图,所以进行一次迭代(将黑格替换为标准型)后,该图中所有黑格表示的标准型都是连通的,也就是说该标准型的二级分形为连通图。又 \(\because G_{\text{h}}\) 连通,仿照上述推理过程可知 \(G_{\text{h}}\) 进行一次迭代后之后,所得的分形仍是连通图,即将该标准型的二级分形左右拼接后,可以得到连通形,\(G_{\text{v}}\) 也同理,如此归纳下去即可证明。
  • 如果 \(G_{\text{h}},G_{\text{v}}\) 中都有两个连通块,那么最终得到的 \(k\) 级分形中有 \(\text{标准型中黑格个数}^{k-1}\) 个黑格,这个好办,\(G_{\text{h}},G_{\text{v}}\) 都有两个连通块,这意味着对于标准型中的任意两个相连的黑格,将它们分别替换为标准型后,彼此之间互不连通,也就是每个黑格各自成一个连通块,记原来的标准型中黑格个数为 \(C\),那么根据之前的推论,二级分形中有 \(C\) 个连通块,\(C^2\) 个黑格,三级分形中有 \(C^2\) 个连通块,\(C^3\) 个黑格,以此类推。

比较棘手的是 \(G_{\text{h}},G_{\text{v}}\) 刚好一个连通,一个不连通的情况。不妨设 \(G_{\text{h}}\) 连通,\(G_{\text{v}}\) 不连通。我们考虑探究一次迭代会对连通块个数产生什么影响。我们考虑使用一个并查集的思想,不妨假设所有黑格替换为的分形都单独成一个连通块,然后将能并的并起来,显然两个黑格表示的连通块能够并起来当且仅当它们左右相邻,而显然左右相邻的格子不会组成环,也就是说每次合并都是合法的,这样减少的连通块个数就是左右相邻的黑格个数,故一次迭代之后连通块的个数,就等于黑格个数减去左右相邻的黑格个数。

考虑怎样计算这个东西,设 \(a_k\) 为 \(k\) 级分形中左右相邻的黑格个数,\(b_k\) 为 \(k\) 级分形中的黑格个数,那么显然可以推出 \(b\) 的递推式 \(b_{k+1}=b_kb_1\),但是推出 \(a\) 的递推式还有些困难。考虑将 \(k\) 级分形替换为 \(k+1\) 级分形后,左右相邻的黑格的来头,显然它可能是一个黑格替换为一个标准型分形后,内部出现左右相邻的黑格,这部分我们是可以计算的,为 \(b_ka_1\),也有可能是本身左右相邻的黑格替换为标准型后,边界上出现左右相邻的黑格,我们发现这东西无法直接表示,那就设一下呗。再设 \(c_k\) 为 \(k\) 级分形中左右拼接的边界上左右相邻的黑格个数,设完之后这东西就很好表示了,为 \(a_kc_1\),即 \(a_{k+1}=b_ka_1+a_kc_1\)。最后考虑 \(c\) 的递推式,显然边界上相邻只可能是原来边界上相邻的黑格被替换为标准型后,每对相邻的黑格新多出 \(c_1\) 对出来,即 \(c_{k+1}=c_kc_1\)。

最后看下数据范围……\(10^{18}\),还有这么多递推式,那显然矩阵快速幂咯。稍微推推即可得到 \(\begin{bmatrix}b_k&a_k\\0&c_k\end{bmatrix}\times\begin{bmatrix}b_1&a_1\\0&c_1\end{bmatrix}=\begin{bmatrix}b_{k+1}&a_{k+1}\\0&c_{k+1}\end{bmatrix}\),即 \(\begin{bmatrix}b_k&a_k\\0&c_k\end{bmatrix}=\begin{bmatrix}b_1&a_1\\0&c_1\end{bmatrix}^k\),快速幂即可。

const int MAXN=1e3;
const int MOD=1e9+7;
int n,m;ll k;
char s[MAXN+5][MAXN+5];
int qpow(int x,ll e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
struct mat{
ll a[2][2];
mat(){memset(a,0,sizeof(a));}
mat operator *(const mat &rhs){
mat ret;
for(int i=0;i<2;i++) for(int j=0;j<2;j++)
for(int k=0;k<2;k++) ret.a[i][j]+=a[i][k]*rhs.a[k][j];
for(int i=0;i<2;i++) for(int j=0;j<2;j++) ret.a[i][j]%=MOD;
return ret;
}
};
int main(){
scanf("%d%d%lld",&n,&m,&k);if(!k) return puts("1"),0;
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
int ud_bor=0,lr_bor=0,ud_ins=0,lr_ins=0,cnt=0;
for(int i=1;i<=m;i++) ud_bor+=(s[1][i]=='#'&&s[n][i]=='#');
for(int i=1;i<=n;i++) lr_bor+=(s[i][1]=='#'&&s[i][m]=='#');
for(int i=1;i<n;i++) for(int j=1;j<=m;j++) ud_ins+=(s[i][j]=='#'&&s[i+1][j]=='#');
for(int i=1;i<=n;i++) for(int j=1;j<m;j++) lr_ins+=(s[i][j]=='#'&&s[i][j+1]=='#');
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) cnt+=(s[i][j]=='#');
// printf("%d %d %d %d %d\n",ud_bor,lr_bor,ud_ins,lr_ins,cnt);
if(!ud_bor&&!lr_bor) printf("%d\n",qpow(cnt,k-1));
else if(ud_bor&&lr_bor) printf("1\n");
else{
mat trs,res;res.a[0][0]=res.a[1][1]=1;--k;
if(ud_bor) trs.a[0][0]=cnt,trs.a[0][1]=ud_ins,trs.a[1][1]=ud_bor;
else trs.a[0][0]=cnt,trs.a[0][1]=lr_ins,trs.a[1][1]=lr_bor;
for(;k;k>>=1,trs=trs*trs) if(k&1) res=res*trs;
printf("%d\n",(res.a[0][0]-res.a[0][1]+MOD)%MOD);
}
return 0;
}

Atcoder Grand Contest 003 F - Fraction of Fractal(矩阵乘法)的更多相关文章

  1. AtCoder Grand Contest 003 F - Fraction of Fractal

    题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_f 题目大意: 给定一个\(H×W\)的黑白网格,保证黑格四连通且至少有一个黑格 定义分形如下 ...

  2. AtCoder Grand Contest 003

    AtCoder Grand Contest 003 A - Wanna go back home 翻译 告诉你一个人每天向哪个方向走,你可以自定义他每天走的距离,问它能否在最后一天结束之后回到起点. ...

  3. AtCoder Grand Contest 002 F:Leftmost Ball

    题目传送门:https://agc002.contest.atcoder.jp/tasks/agc002_f 题目翻译 你有\(n*k\)个球,这些球一共有\(n\)种颜色,每种颜色有\(k\)个,然 ...

  4. AtCoder Grand Contest 003 D - Anticube

    题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_d 题目大意: 给定\(n\)个数\(s_i\),要求从中选出尽可能多的数,满足任意两个数之积 ...

  5. AtCoder Grand Contest 017 F - Zigzag

    题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若 ...

  6. AtCoder Grand Contest 003 E - Sequential operations on Sequence

    题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_e 题目大意 一串数,初始为\(1\sim N\),现有\(Q\)个操作,每次操作会把数组长度 ...

  7. AtCoder Grand Contest 011 F - Train Service Planning

    题目传送门:https://agc011.contest.atcoder.jp/tasks/agc011_f 题目大意: 现有一条铁路,铁路分为\(1\sim n\)个区间和\(0\sim n\)个站 ...

  8. AtCoder Grand Contest 010 F - Tree Game

    题目传送门:https://agc010.contest.atcoder.jp/tasks/agc010_f 题目大意: 给定一棵树,每个节点上有\(a_i\)个石子,某个节点上有一个棋子,两人轮流操 ...

  9. AtCoder Grand Contest 016 F - Games on DAG

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f 题目大意: 给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\) ...

随机推荐

  1. DM8数据库单机安装

    一.系统概要 表1 部署情况一览表 操作系统 Windows10 数据库版本 DM8(开发版) 数据库类型 单机 磁盘挂载 无 Key信息 无 二.操作系统信息检查 2.1 操作系统版本 [root@ ...

  2. 微信小程序的发布流程

    一.背景 在中大型的公司里,人员的分工非常仔细,一般会有不同岗位角色的员工同时参与同一个小程序项目.为此,小程序平台设计了不同的权限管理使得项目管理者可以更加高效管理整个团队的协同工作 以往我们在开发 ...

  3. [no code][scrum meeting] Beta 7

    $( "#cnblogs_post_body" ).catalog() 例会时间:5月21日15:30,主持者:彭毛小民 下次例会时间:5月22日15:30,主持者:赵涛 昨日为5 ...

  4. CSP-S 2021 遗言

    感谢€€£,谢谢宁嘞! 第一题,€€£给了很多限制条件,什么"先到先得"."只有一个跑道",让它看起来很好做,然后来骗,来偷袭,广大"消费者" ...

  5. 算法:N-gram语法

    一.N-gram介绍 n元语法(英语:N-gram)指文本中连续出现的n个语词.n元语法模型是基于(n - 1)阶马尔可夫链的一种概率语言模型,通过n个语词出现的概率来推断语句的结构.这一模型被广泛应 ...

  6. 设计模式(1-2)-动态代理(newProxyInstance)

    上节设计模式(1-1)-代理模式,讲了代理模式的静态代理与动态代理的写法.本节,会从Proxy.newProxyInstance() 这个方法开始讲,上一节文末的那个class文件怎么一步步的来的. ...

  7. 基础篇:JAVA集合,面试专用

    没啥好说的,在座的各位都是靓仔 List 数组 Vector 向量 Stack 栈 Map 映射字典 Set 集合 Queue 队列 Deque 双向队列 关注公众号,一起交流,微信搜一搜: 潜行前行 ...

  8. Jquery校验中国身份证号码是否正确

    在项目中使用表单时经常会涉及到身份证号码是否正确的校验,下面看看应该中国二代身份证号码应该怎么用Jquery校验呢? 二代身份证校验码的计算方法 二代身份证由17位数字和一位校验码组成,那么校验方法是 ...

  9. hdu 3635 Dragon Balls(并查集)

    题意: N个城市,每个城市有一个龙珠. 两个操作: 1.T A B:A城市的所有龙珠转移到B城市. 2.Q A:输出第A颗龙珠所在的城市,这个城市里所有的龙珠个数,第A颗龙珠总共到目前为止被转移了多少 ...

  10. linux 内核源代码情景分析——用户堆栈的扩展

    上一节中,我们浏览了一次因越界访问而造成映射失败从而引起进程流产的过程,不过有时候,越界访问时正常的.现在我们就来看看当用户堆栈过小,但是因越界访问而"因祸得福"得以伸展的情景. ...