hdu1024 最大m子序列和
题意:
给你一个序列n个数组成,然后让你在里面找到m个子序列,让这m个子序列的和最大。
思路:
dp[i][j]表示的是第j个数字在第i个子序列时的当前最优值。
dp[i][j] = maxx(dp[i][j-1] + num[j] ,maxx(dp[i-1][k]) + num[j]); k是从1到j-1.
可以这么理解这个转移方程,对于当前的这个数字,如果把他放到第i个子序列中有两种情况,一个是他作为第i个子序列的第一个数字,另一个就是不作为第一个数字,作为第一个数字的时候是 maxx(dp[i-2][k] + num[j]) 1<=k<i 的意思是从之前的所有中找到i-1个子序列的最大值+当前的值,不做为第一个的时候那么他前面的那个数字一定是i序列的,同一个子序列,又不是作为第一个,那么前面的那个货就一定是同一个子序列的,那么当前的值是dp[i][j-1]
+ num[j],在两种决策中选择一个最有的就行了,还有就是maxx(dp[i-1][k]+num[j])的这个地方可以开一个数组记录下来,不能每次都跑,跑不起,再有就是这个题目没有给m的范围,所以开不了二维数组(目测不是很大,大的话会超时,但是肯定是先超内存在超时,所以为了保险,还是吧dp[][]压缩成一维的)那么状态转移就边成这样了dp[j]表示的是 j这个人在当前的这个子序列中的最优值,mk[j]表示的是在上一个子序列中1--j的dp的最大值,所以就变成 dp[j] = maxx(dp[j-1] +
num[j] ,mk[j-1]+num[j]);还是 max(作为i个子序列的第一个元素,不是第一个元素取一个最大值)。在解释下代码的核心部分。
__int64 Max
for(i = 1 ;i <= m ;i ++) //枚举子序列
{
Max = - INF;
for(j = i ;j <= n ;j ++) //j = i是因为每个子序列最少1个元素
{
if(i == j) dp[j] = mk[j-1] + num[j];//第i个元素只能是第i个子序列的第一个
else
dp[j] = maxx(dp[j-1] ,mk[j-1]) + num[j];
mk[j-1] = Max; //这个地方注意了,不能更新mk[j],只能更新j-1因为更新j就会被当前的这个子序列更新的时候用到。
if(Max < dp[j]) Max = dp[j];
}
}
最后直接输出Max就行了,因为里面保存的正好是第m个子序列中最大的那个。
#include<stdio.h>
#include<string.h> #define N 110000
#define INF 922337203685477580
__int64 num[N] ,dp[N] ,mk[N]; __int64 maxx(__int64 x ,__int64 y)
{
return x > y ? x : y;
} int main ()
{
int n ,m ,i ,j;
while(~scanf("%d %d" ,&m ,&n))
{
for(i = 1 ;i <= n ;i ++)
scanf("%I64d" ,&num[i]);
memset(dp ,0 ,sizeof(dp));
memset(mk ,0 ,sizeof(mk));
__int64 Max;
for(i = 1 ;i <= m ;i ++)
{
Max = -INF;
for(j = i ;j <= n ;j ++)
{
if(i == j) dp[j] = mk[j-1] + num[j];
else
dp[j] = maxx(dp[j-1] ,mk[j-1]) + num[j];
mk[j-1] = Max;
if(Max < dp[j]) Max = dp[j];
}
}
printf("%I64d\n" ,Max);
}
return 0;
}
hdu1024 最大m子序列和的更多相关文章
- 最大m段子段和
hdu1024 最大m子序列和 给定你一个序列,让你求取m个子段(不想交的子段)并求取这m个子段和的最大值 从二维开始来看dp[i][j]表示取第j个数作为第i个子段的元素所得到的前i个子段和的最大值 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- [LeetCode] Is Subsequence 是子序列
Given a string s and a string t, check if s is subsequence of t. You may assume that there is only l ...
- [LeetCode] Wiggle Subsequence 摆动子序列
A sequence of numbers is called a wiggle sequence if the differences between successive numbers stri ...
- [LeetCode] Increasing Triplet Subsequence 递增的三元子序列
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...
- [LeetCode] Distinct Subsequences 不同的子序列
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
随机推荐
- springmvc字符 中文乱码问题
springmvc字符 中文乱码问题 1.字符过滤器 输入中文测试,发现乱码 以前乱码问题通过过滤器解决 , 而SpringMVC给我们提供了一个过滤器 , 可以在web.xml中配置,修改了xml文 ...
- MySQL基础知识:启动管理和账号管理
整理.记录常用的MySQL基础知识:时间久了,很多就忘记了. 操作系统环境为MacOS Catalina, MySQL版本为: 8.0.13 MySQL Community Server - GPL. ...
- 关于MarkDown语法
Markdown语法 码云笔记链接:https://gitee.com/out_of_zi_wen/practical-experience/blob/master/Markdown%E8%AF%AD ...
- 去哪找Java练手项目?
经常有读者在微信上问我: 在学编程的过程中,看了不少书.视频课程,但是看完.听完之后感觉还是不会编程,想找一些项目来练手,但是不知道去哪儿找? 类似的问题,有不少读者问,估计是大部分人的困惑. 练手项 ...
- dfs求连通块
递归 递归是什么?绝大部分人都会说:自己调用自己,刚开始我也是这样理解递归的.确实没错,递归的确是自己调用自己.递归简单的应用:编写一个能计算斐波那契数列的函数,也就是这样: int fb(int n ...
- Nacos 2.0 正式发布,性能提升 10 倍!!
3月20号,Nacos 2.0.0 正式发布了! Nacos 简介: 一个更易于构建云原生应用的动态服务发现.配置管理和服务管理平台. 通俗点讲,Nacos 就是一把微服务双刃剑:注册中心 + 配置中 ...
- Java单链表反转图文详解
Java单链表反转图文详解 最近在回顾链表反转问题中,突然有一些新的发现和收获,特此整理一下,与大家分享 背景回顾 单链表的存储结构如图: 数据域存放数据元素,指针域存放后继结点地址 我们以一条 N1 ...
- Python - 关于类(self/cls) 以及 多进程通讯的思考
Python-多进程中关于类以及类实例的一些思考 目录 Python-多进程中关于类以及类实例的一些思考 1. 背景 2. Python 类中的函数 - staticmethod / classmet ...
- 连续函数离散化-以SOGI为例
0. 引言 0.1 本文内容 基于SOGI函数,将s域传递函数转换为离散的z域函数,并以m语言形式进行实现,在simulink中封装为m-function并进行验证 0.2 学到什么 离散化方法 函数 ...
- Dynamics CRM字段安全配置文件
在实施Dynamics CRM的过程中,有些需求会提到部分字段针对特殊的人员或者团队进行显示.更新以及创建的需求的控制.这里我们就需要用到字段安全性文件这个功能.此功能针对具体实体的字段进行配置可以达 ...