题意:

     给你一个序列n个数组成,然后让你在里面找到m个子序列,让这m个子序列的和最大。

思路:

      dp[i][j]表示的是第j个数字在第i个子序列时的当前最优值。

dp[i][j] = maxx(dp[i][j-1] + num[j] ,maxx(dp[i-1][k]) + num[j]);  k是从1到j-1.

可以这么理解这个转移方程,对于当前的这个数字,如果把他放到第i个子序列中有两种情况,一个是他作为第i个子序列的第一个数字,另一个就是不作为第一个数字,作为第一个数字的时候是 maxx(dp[i-2][k] + num[j]) 1<=k<i 的意思是从之前的所有中找到i-1个子序列的最大值+当前的值,不做为第一个的时候那么他前面的那个数字一定是i序列的,同一个子序列,又不是作为第一个,那么前面的那个货就一定是同一个子序列的,那么当前的值是dp[i][j-1]
+ num[j],在两种决策中选择一个最有的就行了,还有就是maxx(dp[i-1][k]+num[j])的这个地方可以开一个数组记录下来,不能每次都跑,跑不起,再有就是这个题目没有给m的范围,所以开不了二维数组(目测不是很大,大的话会超时,但是肯定是先超内存在超时,所以为了保险,还是吧dp[][]压缩成一维的)那么状态转移就边成这样了dp[j]表示的是 j这个人在当前的这个子序列中的最优值,mk[j]表示的是在上一个子序列中1--j的dp的最大值,所以就变成 dp[j] = maxx(dp[j-1] +
num[j] ,mk[j-1]+num[j]);还是 max(作为i个子序列的第一个元素,不是第一个元素取一个最大值)。在解释下代码的核心部分。


__int64 Max

for(i = 1 ;i <= m ;i ++) //枚举子序列

{

   Max = - INF;

   for(j = i ;j <= n ;j ++) //j = i是因为每个子序列最少1个元素

   {

       if(i == j) dp[j] = mk[j-1] + num[j];//第i个元素只能是第i个子序列的第一个

       else

       dp[j] = maxx(dp[j-1] ,mk[j-1]) + num[j];

       mk[j-1] = Max; //这个地方注意了,不能更新mk[j],只能更新j-1因为更新j就会被当前的这个子序列更新的时候用到。

       if(Max < dp[j]) Max = dp[j];

   }

}

最后直接输出Max就行了,因为里面保存的正好是第m个子序列中最大的那个。



#include<stdio.h>
#include<string.h> #define N 110000
#define INF 922337203685477580

__int64
num[N] ,dp[N] ,mk[N]; __int64 maxx(__int64 x ,__int64 y)
{
return
x > y ? x : y;
} int main ()
{
int
n ,m ,i ,j;
while(~
scanf("%d %d" ,&m ,&n))
{
for(
i = 1 ;i <= n ;i ++)
scanf("%I64d" ,&num[i]);
memset(dp ,0 ,sizeof(dp));
memset(mk ,0 ,sizeof(mk));
__int64
Max;
for(
i = 1 ;i <= m ;i ++)
{

Max = -INF;
for(
j = i ;j <= n ;j ++)
{
if(
i == j) dp[j] = mk[j-1] + num[j];
else

dp[j] = maxx(dp[j-1] ,mk[j-1]) + num[j];
mk[j-1] = Max;
if(
Max < dp[j]) Max = dp[j];
}
}

printf("%I64d\n" ,Max);
}
return
0;
}

hdu1024 最大m子序列和的更多相关文章

  1. 最大m段子段和

    hdu1024 最大m子序列和 给定你一个序列,让你求取m个子段(不想交的子段)并求取这m个子段和的最大值 从二维开始来看dp[i][j]表示取第j个数作为第i个子段的元素所得到的前i个子段和的最大值 ...

  2. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  3. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  4. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  5. [LeetCode] Is Subsequence 是子序列

    Given a string s and a string t, check if s is subsequence of t. You may assume that there is only l ...

  6. [LeetCode] Wiggle Subsequence 摆动子序列

    A sequence of numbers is called a wiggle sequence if the differences between successive numbers stri ...

  7. [LeetCode] Increasing Triplet Subsequence 递增的三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  8. [LeetCode] Distinct Subsequences 不同的子序列

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  9. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. js导出execl 兼容ie Chrome Firefox各种主流浏览器(js export execl)

    第一种导出table布局的表格 1 <html> 2 3 <head> 4 <meta charset="utf-8"> 5 <scrip ...

  2. Java 多线程 01

    多线程· Runnable 和 Thread 多线程的引入 * A:什么是线程 * 线程是程序执行的一条路径,一个进程中可以包含多条线程 * 多线程并发执行可以提高程序的效率,可以同时完成多项工作 * ...

  3. Java 哈希表(google 公司的上机题)

    1 哈希表(散列)-Google 上机题 1) 看一个实际需求,google 公司的一个上机题: 2) 有一个公司,当有新的员工来报道时,要求将该员工的信息加入(id,性别,年龄,住址..),当输入该 ...

  4. 微信小程序自定义Tabber,附详细源码

    目录 1,前言 2,说明 3,核心代码 1,前言 分享一个完整的微信小程序自定义Tabber,tabber按钮可以设置为跳转页面,也可以设置为功能按钮.懒得看文字的可以直接去底部,博主分享了小程序代码 ...

  5. 【译】Visual Studio 的 Razor 编辑器的改进

    自从我们在一个通用的 Razor 语言服务器上发布了 Visual Studio 的一个新的实验性 Razor 编辑器的第一个预览版以来,已经过去了6个月,现在是时候更新一下我们的进展了.团队一直在努 ...

  6. ASP.NET Core扩展库之日志

        上一篇我们对Xfrogcn.AspNetCore.Extensions扩展库功能进行了简单的介绍,从这一篇文章开始,我将逐步介绍扩展库中的核心功能.     日志作为非业务的通用领域基础功能, ...

  7. 一次线上MySQL主从延迟排查

    今天早上来上班,发现zabbix一直告警主从延迟,mysql slave Seconds_Behind_Master (mysql.slave_status[Seconds_Behind_Master ...

  8. 为 .NET 打 Call,为国产平台 Gitee 打 Call,我的 .NET/C# 开源项目清单,同步维护于 Github 和 Gitee

    所有项目遵循 MIT 开源协议.可以随意使用,但是需在源代码和产品关于画面保留版权声明和我的网站链接,谢谢. Sheng.Winform.IDE Github:https://github.com/i ...

  9. maven-plugin-shade 详解

    一.介绍 [1] This plugin provides the capability to package the artifact in an uber-jar, including its d ...

  10. mybatis-plus的Could not set property 'updateDate' of 'class com.example.pojo.User' with value 'Fri Jul 24 10:29:39 CST 2020' Cause: java.lang.IllegalArgumentException: argument type mismatch解决方案

    按照官网在写mybatis-plus的自动填充功能一直报错,发现官网的解说不全,数据库是datetime类型,java程序又是date,类型不匹配 org.mybatis.spring.MyBatis ...