进程代数(Process Algebra)

Process Algebra 理论

提出者 理论名称 缩写 论文链接 简介
C. A. R. Hoare/Tony Hoare Communicating Sequencing Process CSP Communicating Sequential Processes 1978年C. A.R.Hoare提出的通信顺序进程 CSP,是面向分布式系统的程序设计语言
Robin Milner Calculus of Communicating Systems CCS -- 1973至1980年间发明了通信系统演算CCS,是用于描述通信并发系统的代数理论
J.A. Bergstra, J.W. Klop Algebra of Communicating Processes with Abstraction ACP [ACP]http://dspace.library.uu.nl/handle/1874/12719) Bergstra等人1984年提出的 ACP理论针对反应式、并行式和分布式系统,描述了两个系统之间的交互行为

CSP基础知识

  • 原版教材PDF获取,点我

    注:目前已更新至2015版;
  • 中文版可参考周巢尘院士翻译的《通信顺序进程》。但是年代比较久远,是90年代的版本了。

第一章

1、对确定性进程,如何判断两个进程等价?

答: 确定性进程,需要判断两者alphabet(字母表)和traces(迹)是否相等。即:

①\(\alpha P=\alpha Q\)

②\(traces( P) =traces( Q )\)

2、\(traces(\mu X: A \cdot F(x)) = ?\)

答: \(traces(\mu X: A \cdot F(x)) = \{s|\exists n≥0,x \in A,s \le traces(F(x))^{n}\}\)

3、证明:

(下述两道证明题均是采用数学归纳法证明)

(1)\(traces(RUN_{A}) = A^{*}.\)

(注:\(A^{*}\) means the set of sequences with elements in A)

(2)\(traces(VMS) = \cup_{n≥0} \{s| s≤< coin,choc >^{n},n≥0\}.\)

第二章

1、Let \(\alpha P = \{a,c\},\quad and \quad P = (a → c → P), \quad \alpha Q = \{b,c\}\quad and \quad Q = (c → b → Q).\)

(1)\(P || Q = ?\)

答:

\[P||Q
\]
\[= (a → c → P)||(c → b → Q) \tag{by definition}
\]
\[= a → ((c → P)||(c → b → Q)) \tag{by L5A}
\]
\[= a → c → (P||(b → Q))
\]

Also

\[P||(b → Q)
\]
\[= (a → (c → P)||(b → Q)
\]
\[|b → (P||Q)) [by L6]
\]
\[= (a → b → ((c → P)||Q) |b → (P||Q)) \tag{ by L5B}
\]
\[= (a → b → c → (P||(b → Q)) |b → a → c → (P||(b → Q))) \tag{by ‡above}
\]
\[= µX • (a → b → c → X|b → a → c → X)
\]

Therefore

\[(P||Q) = (a → c → μX(a → b → c → X|b → a → c → X)) \tag{by ‡above}
\]

(2)Please prove that \(P|| Q \quad sat\quad 0 ≤ tr↓ a-tr↓ b ≤ 2.\)

答:

1.若 \(tr\) 未运行到循环阶段,则 \(tr ↓ a = 1\) 或 \(0\), \(tr↓ b = 0\) 满足不等式;

2.若 \(tr\) 运行到循环并恰好完成若干次循环,则由于每次循环 \(a\) 的个数 \(=\quad b\) 的个数,所以\(tr ↓ a − tr ↓ b = 1\)。

3.若 \(tr\) 运行到某次循环中,由于本次循环前满足 \(tr ↓ a - tr ↓ b= 1\),

所以:

若运行 \(a → b → c → X\),则 \(tr↓ a − tr ↓ b =2\) 或 \(1\);

若运行 \(b → a → c → X\),则 \(tr ↓ a- tr ↓ b=0\) 或 \(1\);

综上,\(0 ≤ tr↓ a- tr ↓ b≤ 2\)。

2、If P and Q never stop and if \(\alpha P \cap \alpha Q\) contains at most one element, then\((P || Q)\) never stops.

(1)请直观解释此结论的正确性。

答: 因为P和Q的字母表交集最多含有1个元素,所以不会触发\((c → P)||(d → Q) = STOP \quad if c\ne d\)

(2)当 \(\alpha P \cap \alpha Q\) 含有 2 个或更多元素时,此结论不成立,举例说明。

如\(\alpha P = \alpha Q = \{a, b\},\)

\(P = a \rightarrow b \rightarrow P;\)

\(Q = b \rightarrow a \rightarrow Q;\)

\(P || Q = STOP.\)

第三章

1、

(1)\(traces(P\sqcap Q) = ?\)

答: \(traces(P\sqcap Q)=traces(P) ∪ traces(Q)\)

(2)\(traces(P \square Q) = ?\)

答: \(traces(P \square Q)= traces(P)∪ traces(Q)\)

(3)\(refusals(P \sqcap Q) = ?\)

答: \(refusals(P\sqcap Q) = refusals(P) ∪ refusals(Q)\)

(4)\(refusals(P\square Q) = ?\)

答: \(refusals(P\square Q)=refusals(P) ∩ refusals(Q)\)

(5)令\(\alpha P = \alpha Q = \alpha P_{1} = \alpha Q_{1}= \{a,b,c\},\)

\(P_{1} = (a → b → STOP)\)

\(P_{2}= (b → c → STOP)\)

\(P = P_{1} \sqcap P_{2}\)

\(Q = P_{1}\square P_{2}\)

问:

①\(refusals(P) = ?\)

②\(refusals(Q) = ?\)

答:

\(refusals(P_{1}) = \{\{\},{b},{c},{b,c}\}\)

\(refusals(P_{2}) =\{\{\},{a},{c},{a,c}\}\)

\(refusals(P) = \{\{\},{a},{b},{c},{b,c},{a,c}\}\)

\(refusals(Q) =\{\{\},{c}\}\)

(6)\(refusals(P|| Q) = ?\)

答: \(refusals(P||Q)=\{X ∪ Y | X \in refusals(P) \wedge Y \in refusals(Q)\}\)

(7)\(refusals(P|||Q) = ?\)

答:\(refusals(P|||Q) =refusals(P\square Q) =refusals(P) \cap refusals(Q)\)

2.

(1)\(divergences(Chaos) = ?\)

答: \(divergences(Chaos) = A^*\)

(2)\(divergences(X: B → P(X)) = ?\)

答: \(\{⟨x⟩\smallfrown s | x \in B \wedge s \in divergences(P(x))\}\)

(3)\(divergences(P \sqcap Q) = ?\)

答: \(divergences(P) ∪ divergences(Q)\)

(4)\(divergences(P\square Q) = ?\)

答: \(divergences(P) ∪ divergences(Q)\)

(5)\(divergences(P∥Q) = ?\)

答: \(\{s \smallfrown t|t \in (\alpha P ∪ \alpha Q) ^{*} \wedge
((s \upharpoonright\alpha P \in divergences( P )\wedge s \upharpoonright \alpha Q \in traces(Q)) ∨
(s \upharpoonright \alpha P \in traces(P) \wedge s\upharpoonright \alpha Q \in divergences(Q))\}\)

(6)\(divergences(P|||Q) = ?\)

答: \(\{u | \exists s, t • u \quad interleaves (s, t) \wedge ((s \in divergences(P) \wedge t \in traces(Q)) ∨ (s \in traces(P) \wedge t \in divergences(Q)))\}\)

3.

(1)\(failures(P) = ?\)

答: \(failures(P) =\{(s, X)| s \in traces(P) \wedge X \in refusals(P/s)\}\)

(2)P 与 Q 的定义如上述第三章的 1、(3)所定义:

问:\(failures(P) = ?\) \(failures(Q) = ?\)

(3)

①\(failures(P \sqcap Q) = ?\)

答: \(failures(P \sqcap Q) =failures(P)\cup failures(Q)\)

②\(failures(X: B → P(X)) = ?\)

答: \(\{(<>, X)| X \subseteq (\alpha P − B)\} ∪ \{(⟨x⟩ \smallfrown s, X)| x \in B \wedge (s, X) \in failures(P(x))\}\)

③\(failures(P ∥ Q) = ?\)

答: \(failures(P||Q) = \{(s, X \cup Y )|s \in (\alpha P ∪ \alpha Q) ^{*} \wedge (s \upharpoonright \alpha P, X) \in failures(P) \wedge (s\upharpoonright \alpha Q, Y ) \in failures(Q)\} \cup \{(s, X)|s \in divergences(P||Q)\}\)

④\(failures(P \square Q) = ?\)

答: \(\{(s, X)|(s, X) \in failures(P) ∩ failures(Q)) \vee (s \ne <>\wedge (s, X) \in failures(P) \cup failures(Q))\} \cup \{(s, X)| s \in divergences(P \square Q)\}\)

⑤\(failures(P|||Q) = ?\)

答: \(\{(s, X)| ∃t, u• (t, X) \in failures(P) \wedge (u, X) \in failures(Q) \} ∪ \{(s, X)| s \in divergences(P|||Q)\}\)

4.对非确定性进程,如何判断两个进程等价?

答:对非确定性进程而言,使用traces已经无法区分(如,第三章的 1、(3)所定义的两进程\(P\)和\(Q\):\(\alpha P=\alpha Q\),且\(traces(P)=traces(Q )\));进一步引入\(refusals\),但是用\(refusals\)来判断,具有局限性。最终,通过\(alphabet\)、\(divergences\)和\(failures\)综合判断。

即:

①\(\alpha P=\alpha Q\)

②\(divergences(P)=divergences(Q)\)

③\(failures(P)=failures(Q)\)

CSP: Operational Semantics

1、如何从 CSP 通讯的操作语义角度理解 CSP 并发定义中要求公共事件须同步?

答:

A和B之间存在通信的管道,可以发送某种类型的消息,B在接收到A的消息之前,并不清楚A发送的内容,只知道类型;

只有在A发送的同时,B同步接收,双方才可以通信,因此公共事件须同步。

2、从 CSP 的操作语义的角度定义:

(1)\(failures(P) = ?\)

答: \(failures(P) ={}_{df}\{s,X|\exists P_{1},P_{2}\cdot P\stackrel{s}{ \implies}P1\wedge P_{1}\xrightarrow {*}P_2\wedge stable(P_2)\wedge \forall c\in X\cdot \lnot (P_2\rightarrow)\}\)

(2)\(divergences(P) = ?\)

答: \(divergences(P) = {}_{df}\{s|\exists P_{1}\cdot P\stackrel{s}{ \implies}{s} P_{1}\wedge \uparrow P_{1}\}\)

CCS: Bisimulation

1.CCS 中 Strong Bisimulation 是如何定义的?

A binary relation \(S \subseteq P × P\) over agents is a strong bisimulation if \((P, Q) \in S\) implies, for all \(\alpha \in Act\),

(1) Whenever \(P \xrightarrow {\alpha }P'\) then, for some \(Q'\) , \(Q\xrightarrow {\alpha}Q'\) and \((P' ,Q' ) \in S\)

(2) Whenever \(Q \xrightarrow {\alpha } Q'\) then, for some \(P'\) , \(P \xrightarrow {\alpha }P'\) and \((P', Q') \in S\)

Denoted by \(P \sim Q\).

2.CCS 中 Weak Bisimulation 是如何定义的?

A binary relation \(S \subseteq P × P\) over agents is a weak bisimulation if \((P, Q) \in S\) implies, for all \(\alpha \in Act\),

(1) Whenever \(P \xrightarrow {\alpha } P'\) then, for some \(Q'\) , \(Q \stackrel{ \hat\alpha }{ \implies}Q'\) and \((P' ,Q' ) \in S\)

(2) Whenever \(Q \xrightarrow {\alpha } Q'\) then, for some \(P'\) , \(P \stackrel{ \hat\alpha }{ \implies} P'\) and \((P', Q') \in S\)

Denoted by \(P \approx Q\).

进程代数CSP基础知识总结(Communicating sequencing process)的更多相关文章

  1. Android查缺补漏(IPC篇)-- 进程间通讯基础知识热身

    本文作者:CodingBlock 文章链接:http://www.cnblogs.com/codingblock/p/8479282.html 在Android中进程间通信是比较难的一部分,同时又非常 ...

  2. Python进阶----计算机基础知识(操作系统多道技术),进程概念, 并发概念,并行概念,多进程实现

    Python进阶----计算机基础知识(操作系统多道技术),进程概念, 并发概念,并行概念,多进程实现 一丶进程基础知识 什么是程序: ​   程序就是一堆文件 什么是进程: ​   进程就是一个正在 ...

  3. Java多线程原理+基础知识(超级超级详细)+(并发与并行)+(进程与线程)1

    Java多线程 我们先来了解两个概念!!!! 1.什么是并发与并行 2.什么是进程与线程 1.什么是并发与并行 1.1并行:两个事情在同一时刻发生 1.2并发:两个事情在同一时间段内发生 并发与并行的 ...

  4. Windows内核基础知识-8-监听进程、线程和模块

    Windows内核基础知识-8-监听进程.线程和模块 Windows内核有一种强大的机制,可以在重大事件发送时得到通知,比如这里的进程.线程和模块加载通知. 本次采用链表+自动快速互斥体来实现内核的主 ...

  5. Mysql学习总结(4)——MySql基础知识、存储引擎与常用数据类型

    1.基础知识 1.1.数据库概述 简单地说:数据库(Database或DB)是存储.管理数据的容器: 严格地说:数据库是"按照某种数据结构对数据进行组织.存储和管理的容器". 总结 ...

  6. .NET面试题系列[1] - .NET框架基础知识(1)

    很明显,CLS是CTS的一个子集,而且是最小的子集. - 张子阳 .NET框架基础知识(1) 参考资料: http://www.tracefact.net/CLR-and-Framework/DotN ...

  7. 学习 shell脚本之前的基础知识

    转载自:http://www.92csz.com/study/linux/12.htm  学习 shell脚本之前的基础知识 日常的linux系统管理工作中必不可少的就是shell脚本,如果不会写sh ...

  8. TCP/IP协议(一)网络基础知识

    参考书籍为<图解tcp/ip>-第五版.这篇随笔,主要内容还是TCP/IP所必备的基础知识,包括计算机与网络发展的历史及标准化过程(简述).OSI参考模型.网络概念的本质.网络构建的设备等 ...

  9. Oracle数据库基础知识

    oracle数据库plsql developer   目录(?)[-] 一     SQL基础知识 创建删除数据库 创建删除修改表 添加修改删除列 oracle cascade用法 添加删除约束主键外 ...

随机推荐

  1. DL基础补全计划(六)---卷积和池化

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  2. IP实验笔记

    代码: 对LSW1: Vlan 10 Interface ethernet 0/0/1 Port link-type access Port default vlan 10 Interface eth ...

  3. JVM学习笔记之类加载机制【八】

    一.类加载时机 1.1 触发类初始化的六个场景: 加载? 1.遇到new.getstatic.putstatic或invokestatic这四条字节码指令时 如果类型没有进行过初始化,则需要先触发其初 ...

  4. NOIP 模拟 $33\; \rm Hunter$

    题解 \(by\;zj\varphi\) 结论题. 对于 \(1\) 猎人,他死的期望就是有多少个死在它前面. 那么对于一个猎人,它死在 \(1\) 前的概率就是 \(\frac{w_i}{w_i+w ...

  5. 痞子衡嵌入式:其实i.MXRT下改造FlexSPI driver同样支持AHB方式去写入NOR Flash

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是i.MXRT下改造FlexSPI driver以AHB方式去写入NOR Flash. 痞子衡前段时间写过一篇 <串行NAND Fl ...

  6. mongoose报错:DeprecationWarning: collection.ensureIndex is deprecated. Use createIndexes instead

    参考:mongoose报错:DeprecationWarning: collection.ensureIndex is deprecated. Use createIndexes instead mo ...

  7. .net下Global.asax使用

    Global.asax 文件,有时候叫做 ASP.NET 应用程序文件,提供了一种在一个中心位置响应应用程序级或模块级事件的方法.你可以使用这个文件实现应用程序安全性以及其它一些任务.下面让我们详细看 ...

  8. Leaflet 中 删除 一个 标记(Marker)

    参考:https://blog.csdn.net/qq_34922009/article/details/81184004 下面是我在Leaflet官方文档所找到的答案 ,希望可以帮助到大家 比如以下 ...

  9. C++继承体系中的内存分段

    ---------------综述与目录-------------- 讨论这个问题之前我们先明确类的结构,一个类的大概组成,下面的很多分类名词都是我个人杜撰,为的就是让读者看懂能够区分,下面分别分类: ...

  10. C#多线程---Semaphore实现线程同步

    一.简介 Semaphore类限制可同时访问某一资源或资源池的线程数.线程通过调用 WaitOne方法将信号量减1,并通过调用 Release方法把信号量加1. 构造函数:public Semapho ...