Solution -「CF 1392H」ZS Shuffles Cards
\(\mathcal{Description}\)
Link.
打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌。随机抽牌,若抽到数字,将数字加入集合 \(S\);否则,还原牌堆(但不清空 \(S\))。若 \(S=[1,n]\) 且抽到鬼牌时结束抽牌。求期望抽牌次数。
\(n,m\le2\times10^6\)。
\(\mathcal{Solution}\)
称从初始牌堆开始抽牌一直到抽到鬼牌为一轮操作,发现结束时必然抽了若干个完整的轮且不能中途终止。所以“抽完一轮”和“结束抽牌”两事件独立,分别记二者的随机变量为 \(\xi_1\) 和 \(\xi_2\),则答案为 \(E(\xi_1\xi_2)=E(\xi_1)E(\xi_2)\)。
\(E(\xi_1)\) 显然等于一轮抽到数字牌的期望张数 \(+1\)。 而由期望线性性,它也等于 \(n\times p+1\),其中 \(p\) 表示抽到某一张牌的概率,有:
\]
一种直观的解释方法是,把每张数字牌和 \(m\) 张鬼牌绑为一组,每次拿出这样一组牌,再从中随机选出一张作为抽到的牌,其它牌丢掉,不难证明这和原操作等价。显然拿出某一张数字牌所在的组时,有 \(p=\frac{1}{m+1}\) 的概率真正拿到这张数字牌,不然就永远拿不到了。于是,我们求到了:
\]
求 \(E(\xi_2)\),令 \(f(i)\) 表示已有 \(|S|=n-i\),到结束时的期望轮数。方程有:
\]
特别留意上式,总牌数 \(m+i\) 是因为其他 \(n-i\) 张数字牌没有任何意义,可以忽略;前一项抽到鬼牌,轮数才要 \(+1\);后一项抽到有用数字牌,但是这一轮并没有结束,所以不用 \(+1\)。
整理一下:
\]
对于边界 \(f(1)\),即 \(m+1\) 张里挑出一张的期望,显然有 \(f(1)=m+1\)。代一代求出 \(f(n)\):
\]
综上,答案为:
E(\xi_1\xi_2)&=E(\xi_1)E(\xi_2)\\
&=\left(\frac{n}{m+1}+1\right)f(n)\\
&=\left( \frac{n}{m+1}+1 \right)\left( 1+m\sum_{i=1}^n\frac1i \right)
\end{aligned}
\]
计算即可。复杂度 \(\mathcal O(n+\log m)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MOD = 998244353, MAXN = 2e6;
int n, m, inv[MAXN + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
int main () {
scanf ( "%d %d", &n, &m );
int turn = ( n + m + 1ll ) * qkpow ( m + 1, MOD - 2 ) % MOD, times = 1;
for ( int i = 1; i <= n; ++ i ) {
inv[i] = i ^ 1 ? 1ll * inv[MOD % i] * ( MOD - MOD / i ) % MOD : 1;
times = ( times + 1ll * m * inv[i] ) % MOD;
}
printf ( "%d\n", int ( 1ll * turn * times % MOD ) );
return 0;
}
Solution -「CF 1392H」ZS Shuffles Cards的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- centos7 安装zabbix3.0 安装zabbix4.0 yum安装zabbix 国内源安装zabbix 阿里云服务器安装zabbix
首先,此篇文章是有原因的. 刚开始也和大家一样来学习安装zabbix 奈何网上的教程和现实出现不一样的情况 在安装zabbix过程中,因为zabbix下载源是在国外,下载途中会出现终止下载的情况 tr ...
- nuxt中报window is not defined
1.如果是引用插件报错的话,原因是在服务端渲染时找不到window,这样在插件引入位置把ssr设置为false即可. plugins: [ { src: '@/plugins/iview', ssr: ...
- Android官方文档翻译 十 2.3Styling the Action Bar
Styling the Action Bar 设计菜单栏的样式 This lesson teaches you to 这节课教给你 Use an Android Theme 使用一个Android主题 ...
- 【Java】GUI实现贪吃蛇
[Java]GUI实现贪吃蛇 前言 我们在做这个小游戏之前,得确保自己的AWT和Swing有一定的基础,并且会写一些简单的逻辑操作.这些都会在后面写的时候体现出来. 狂神老师从这里开始讲贪吃蛇的 我们 ...
- 【刷题-LeetCode】264. Ugly Number II
Ugly Number II Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose ...
- 从SQL Server数据库导出SQL语句
不同于直接 备份/恢复 或者 导入/导出 数据库操作. 新版本SQL Server客户端中还可以生成相对应的SQL语句. 非常方便与查看和与其他人共享. 连接上数据库后, 右击数据库, 选择 Gene ...
- tarjan全家桶
tarjan 全家桶 关于tarjan 它太强了 CCCOrz dfs树&low dfs树:在图上做不重复经过同一点的dfs,经过的边与点形成一棵树.于是图上所有点都被这棵树包含,一部分边被包 ...
- FHQtreap(我有个绝妙的理解方法,但课的时间不够[doge])
FHQtreap板子(P1486 [NOI2004] 郁闷的出纳员) 会了FHQ,treap什么的就忘了吧...... #include<bits/stdc++.h> using name ...
- 不难懂-----type=number 去掉加减按钮并禁止鼠标滚轮滚动
<style> /* 去除webkit中input的type="number"时出现的上下图标 */ input::-webkit-outer-spin-button, ...
- linux安装第三方软件 python3
一:linux安装python3 安装第三方软件的目录 进入目录 /usr/local 下载rpm安装包 安装pyton yum安装python : yum install python3 查看pyt ...