Solution -「CF 1392H」ZS Shuffles Cards
\(\mathcal{Description}\)
Link.
打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌。随机抽牌,若抽到数字,将数字加入集合 \(S\);否则,还原牌堆(但不清空 \(S\))。若 \(S=[1,n]\) 且抽到鬼牌时结束抽牌。求期望抽牌次数。
\(n,m\le2\times10^6\)。
\(\mathcal{Solution}\)
称从初始牌堆开始抽牌一直到抽到鬼牌为一轮操作,发现结束时必然抽了若干个完整的轮且不能中途终止。所以“抽完一轮”和“结束抽牌”两事件独立,分别记二者的随机变量为 \(\xi_1\) 和 \(\xi_2\),则答案为 \(E(\xi_1\xi_2)=E(\xi_1)E(\xi_2)\)。
\(E(\xi_1)\) 显然等于一轮抽到数字牌的期望张数 \(+1\)。 而由期望线性性,它也等于 \(n\times p+1\),其中 \(p\) 表示抽到某一张牌的概率,有:
\]
一种直观的解释方法是,把每张数字牌和 \(m\) 张鬼牌绑为一组,每次拿出这样一组牌,再从中随机选出一张作为抽到的牌,其它牌丢掉,不难证明这和原操作等价。显然拿出某一张数字牌所在的组时,有 \(p=\frac{1}{m+1}\) 的概率真正拿到这张数字牌,不然就永远拿不到了。于是,我们求到了:
\]
求 \(E(\xi_2)\),令 \(f(i)\) 表示已有 \(|S|=n-i\),到结束时的期望轮数。方程有:
\]
特别留意上式,总牌数 \(m+i\) 是因为其他 \(n-i\) 张数字牌没有任何意义,可以忽略;前一项抽到鬼牌,轮数才要 \(+1\);后一项抽到有用数字牌,但是这一轮并没有结束,所以不用 \(+1\)。
整理一下:
\]
对于边界 \(f(1)\),即 \(m+1\) 张里挑出一张的期望,显然有 \(f(1)=m+1\)。代一代求出 \(f(n)\):
\]
综上,答案为:
E(\xi_1\xi_2)&=E(\xi_1)E(\xi_2)\\
&=\left(\frac{n}{m+1}+1\right)f(n)\\
&=\left( \frac{n}{m+1}+1 \right)\left( 1+m\sum_{i=1}^n\frac1i \right)
\end{aligned}
\]
计算即可。复杂度 \(\mathcal O(n+\log m)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MOD = 998244353, MAXN = 2e6;
int n, m, inv[MAXN + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
int main () {
scanf ( "%d %d", &n, &m );
int turn = ( n + m + 1ll ) * qkpow ( m + 1, MOD - 2 ) % MOD, times = 1;
for ( int i = 1; i <= n; ++ i ) {
inv[i] = i ^ 1 ? 1ll * inv[MOD % i] * ( MOD - MOD / i ) % MOD : 1;
times = ( times + 1ll * m * inv[i] ) % MOD;
}
printf ( "%d\n", int ( 1ll * turn * times % MOD ) );
return 0;
}
Solution -「CF 1392H」ZS Shuffles Cards的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- 华为云 Kubernetes 管理员实训 三 课后作业
Exercise 1 通过Deployment方式,使用redis镜像创建一个pod.通过kubectl获得redis启动日志. Deployment的名称为<hwcka-003-1-你的华为云 ...
- 为 MySQL 的 root 用户设置一个密码。
shell> mysqladmin --user=root password somepasswordshell> mysqladmin --user=root --password re ...
- Eclipse配置Maven3.5
原文: https://www.toutiao.com/i6494558327622599181/ 配置Maven 首先保证Java环境是有的(Maven 3.1以上 要求 JDK 1.6 或以上版本 ...
- 闯祸了,生成环境执行了DDL操作《死磕MySQL系列 十四》
由于业务随着时间不停的改变,起初的表结构设计已经满足不了如今的需求,这时你是不是想那就加字段呗!加字段也是个艺术活,接下来由本文的主人咔咔给你吹. 试想一下这个场景 事务A在执行一个非常大的查询 事务 ...
- Linux系统下,Redis的安装与启动
1.安装Redis之前,我们先介绍下Redis: (1)Redis是什么?都有哪些特点? 概念:Redis (REmote DIctionary Server) 是用 C 语言开发的一个开源的高性能键 ...
- 【Java】抽象类与抽象方法
文章目录 抽象类与抽象方法 abstract关键字的使用 abstract修饰类:抽象类 abstract修饰方法:抽象方法 abstract使用上的注意点: 抽象类的匿名子类 模板方法设计模式 抽象 ...
- [Keil 学习] printf, scanf函数的用法
C语言库函数中有一批"标准输入输出函数",它是以标准的输入输出设备(一般为终端设备)为输入输出对象的,其中用得比较多的是printf和scanf函数了. 在嵌入式设备中加入C语言的 ...
- seq2seq+torch7聊天机器人bug处理
[C]: in function 'error' ...root1/torch/install/share/lua/5.2/rnn/recursiveUtils.lua:44: in function ...
- 解决matplotlib中文不显示问题
在导入库时添加如下几行代码 from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 mpl.rcPa ...
- CSS实现事件穿透与背景图不跟随滚动条
1. 事件穿透属性:pointer-events: none // auto默认值.none:不捕捉target事件(实现穿透) 用途:当需要使用透明遮罩并且允许点击遮罩下方元素时,或需要使用背景容 ...