Solution -「LOCAL」过河
\(\mathcal{Description}\)
一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\)。求可达的整点数。
\(L\le10^{12}\),\(1\le a,b\le10^5\)。
\(\mathcal{Solution}\)
\(\mathcal{Case~1}\)
考场上玄学操作,天知道为什么兔子签到的姿势如此诡异。
显然先约 \(\gcd\)。我们从 \(0\) 次开始枚举 \(-b\) 的次数,设当前枚举到 \(k\),若 \(kb\equiv0\pmod a\),可以通过少一次 \(a\) 来完成,调出循环;否则,钦定 \(k\) 次 \(-b\) 时,可达的整点一定是一个模 \(a\) 剩余类中连续的区间,即 \(l,l+a,l+2a,\cdots,r\)。我们只需要维护出 \((l,r)\),累加 \(\frac{r-l}a+1\) 就能得到答案。考虑多一次 \(-b\) 对 \((l,r)\) 的影响,例如当 \(a=4,b=3\):
\]
首先左移 \(b\) 位,类似位运算,出界的低位被销毁:
\]
这个时候需要判断是否存在 \(l+ka\)(可能 \(b\) 是 \(a\) 的若干倍,不仅是一个 \(+a\) 可以拉回来的),若不存在,跳出。然后考虑更新 \(r\),它还能往后 \(+a\),一直顶满上限:
\]
于是模拟一下就解决了。复杂度 \(\mathcal O(a+b)\)。
\(\mathcal{Case~2}\)
可以打表证明当 \(a+b-1>L\),答案为 \(L+1\);否则暴力 DFS……
兔子可能是个傻瓜,嗯。
\(\mathcal{Code}\)
// case 1
#include <cstdio>
typedef long long LL;
inline char fgc () {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread ( p = buf, 1, 1 << 17, stdin ), p == q ) ? EOF : *p ++;
}
inline LL rint () {
LL x = 0; char s = fgc ();
for ( ; s < '0' || '9' < s; s = fgc () );
for ( ; '0' <= s && s <= '9'; s = fgc () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void wint ( const LL x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
LL L, a, b;
bool vis[100005];
inline LL gcd ( const LL a, const LL b ) {
return b ? gcd ( b, a % b ) : a;
}
int main () {
freopen ( "river.in", "r", stdin );
freopen ( "river.out", "w", stdout );
L = rint (), a = rint (), b = rint ();
int d = gcd ( a, b );
a /= d, b /= d, L /= d;
if ( a == 1 ) return wint ( L + 1 ), putchar ( '\n' ), 0;
if ( b == 1 ) return wint ( a > L ? 1 : L + 1 ), putchar ( '\n' ), 0;
LL ans = L / a + 1, l = 0, r = a * ( L / a );
vis[0] = true;
for ( int useb = 1; !vis[1ll * useb * b % a]; ++ useb ) {
vis[useb * b % a] = true;
l -= b;
if ( l < 0 ) l += a * ( ( -l - 1 ) / a + 1 );
if ( l + b > r ) break;
r -= b;
if ( L - r >= a ) r += a * ( ( L - r ) / a );
if ( l > r ) break;
ans += ( r - l ) / a + 1;
}
wint ( ans ), putchar ( '\n' );
return 0;
}
\(\mathcal{Details}\)
还陷在省选难度签不动道的怪圈里……这道题算上拍浪费了差不多 \(40min\)。
麻烦兔子醒醒啊!
Solution -「LOCAL」过河的更多相关文章
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\) OurOJ. 维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...
- Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
- Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy
\(\mathcal{Description}\) Link.(完全一致) 给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...
随机推荐
- navicat 找不到系统路径 【修改了系统路径中文名称引起的】
这是我还没修改系统路径中文名称时的路径, 怎么办? 关闭当前用户连接 右键,选择连接属性 把那个改了即可
- Hive的导入导出和常用过滤语句的学习
原文: https://www.toutiao.com/i6769166601871688196/?group_id=6769166601871688196 数据的导入 load data [loca ...
- CentOS6.5安装Hive-1.2.2
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6627669615377908231/ Hadoop环境已安装完成<CentOS6.5下安装Hadoop-2. ...
- 移动端H5选择本地图片
移动端H5选择本地图片 html://input<input type="file" accept="image/*" capture="cam ...
- springboot打包第三方jar包是失败
在项目开发时有时我们需要引入一些在maven仓库中不存在的包 一.配置maven环境变量 在path环境变量中添加 %maven_home%\bin (window10环境下) cmd界面输入 mvn ...
- X-Forwarded-for漏洞解析
首先了解X-Forwarded-for(简称:XFF) X-Forwarded-for:简称XFF,它代表客户端,也就是HTTP的请求真实的IP,只有在通过了HTTP代理或者负载均衡器时才会添加该项. ...
- Web开发之HTTP协议
HTTP响应消息 一个HTTP响应代表服务器向客户端回送的数据. 一个完整的HTTP响应包括如下内容: 一个状态行.若干消息头.以及响应正文,其中的一些消息头和正文都是可选的,消息头和正文内容之间要用 ...
- golang中闭包讲解
1. 非闭包时的结果 package main import "fmt" func main() { var funcSlice []func() for i := 0; i &l ...
- Go 变量及基本数据类型1
#### Go 变量及基本数据类型(一)今天主要学习一下Go 中的变量及基本数据类型: 如何申明,使用变量,以及基本数据类型的介绍和使用细节; ##### 变量的介绍1. 变量相当于内存中一个数据存储 ...
- java多态成员变量、成员函数(非静态)、静态函数特点
1 package face_09; 2 3 /* 4 * 多态时, 5 * 成员的特点: 6 * 1,成员变量. 7 * 编译时:参考引用型变量所属类中的是否有调用的成员变量,有,编译通过:没有,编 ...