\(\mathcal{Description}\)

  一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\)。求可达的整点数。

  \(L\le10^{12}\),\(1\le a,b\le10^5\)。

\(\mathcal{Solution}\)

\(\mathcal{Case~1}\)

  考场上玄学操作,天知道为什么兔子签到的姿势如此诡异。

  显然先约 \(\gcd\)。我们从 \(0\) 次开始枚举 \(-b\) 的次数,设当前枚举到 \(k\),若 \(kb\equiv0\pmod a\),可以通过少一次 \(a\) 来完成,调出循环;否则,钦定 \(k\) 次 \(-b\) 时,可达的整点一定是一个模 \(a\) 剩余类中连续的区间,即 \(l,l+a,l+2a,\cdots,r\)。我们只需要维护出 \((l,r)\),累加 \(\frac{r-l}a+1\) 就能得到答案。考虑多一次 \(-b\) 对 \((l,r)\) 的影响,例如当 \(a=4,b=3\):

\[-~~~~-~~~~l~~~~-~~~~-~~~~-~~~~l+a~~~~-~~~~-~~~~-~~~~r~~~~-
\]

  首先左移 \(b\) 位,类似位运算,出界的低位被销毁:

\[-~~~~-~~~~-~~~~l+a~~~~-~~~~-~~~~-~~~~r~~~-~~~~-~~~~-~~~~-
\]

  这个时候需要判断是否存在 \(l+ka\)(可能 \(b\) 是 \(a\) 的若干倍,不仅是一个 \(+a\) 可以拉回来的),若不存在,跳出。然后考虑更新 \(r\),它还能往后 \(+a\),一直顶满上限:

\[-~~~~-~~~~-~~~~l+a~~~~-~~~~-~~~~-~~~~r-a~~~-~~~~-~~~~-~~~~r
\]

  于是模拟一下就解决了。复杂度 \(\mathcal O(a+b)\)。

\(\mathcal{Case~2}\)

  可以打表证明当 \(a+b-1>L\),答案为 \(L+1\);否则暴力 DFS……

  兔子可能是个傻瓜,嗯。

\(\mathcal{Code}\)

// case 1
#include <cstdio> typedef long long LL; inline char fgc () {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread ( p = buf, 1, 1 << 17, stdin ), p == q ) ? EOF : *p ++;
} inline LL rint () {
LL x = 0; char s = fgc ();
for ( ; s < '0' || '9' < s; s = fgc () );
for ( ; '0' <= s && s <= '9'; s = fgc () ) x = x * 10 + ( s ^ '0' );
return x;
} inline void wint ( const LL x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} LL L, a, b;
bool vis[100005]; inline LL gcd ( const LL a, const LL b ) {
return b ? gcd ( b, a % b ) : a;
} int main () {
freopen ( "river.in", "r", stdin );
freopen ( "river.out", "w", stdout );
L = rint (), a = rint (), b = rint ();
int d = gcd ( a, b );
a /= d, b /= d, L /= d;
if ( a == 1 ) return wint ( L + 1 ), putchar ( '\n' ), 0;
if ( b == 1 ) return wint ( a > L ? 1 : L + 1 ), putchar ( '\n' ), 0;
LL ans = L / a + 1, l = 0, r = a * ( L / a );
vis[0] = true;
for ( int useb = 1; !vis[1ll * useb * b % a]; ++ useb ) {
vis[useb * b % a] = true;
l -= b;
if ( l < 0 ) l += a * ( ( -l - 1 ) / a + 1 );
if ( l + b > r ) break;
r -= b;
if ( L - r >= a ) r += a * ( ( L - r ) / a );
if ( l > r ) break;
ans += ( r - l ) / a + 1;
}
wint ( ans ), putchar ( '\n' );
return 0;
}

\(\mathcal{Details}\)

  还陷在省选难度签不动道的怪圈里……这道题算上拍浪费了差不多 \(40min\)。

  麻烦兔子醒醒啊!

Solution -「LOCAL」过河的更多相关文章

  1. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  2. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  3. Solution -「LOCAL」Drainage System

    \(\mathcal{Description}\)   合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...

  4. Solution -「LOCAL」Burning Flowers

      灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\)   给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...

  5. Solution -「LOCAL」画画图

    \(\mathcal{Description}\)   OurTeam.   给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...

  6. Solution -「LOCAL」ZB 平衡树

    \(\mathcal{Description}\)   OurOJ.   维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...

  7. Solution -「LOCAL」舟游

    \(\mathcal{Description}\)   \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...

  8. Solution -「LOCAL」充电

    \(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...

  9. Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy

    \(\mathcal{Description}\)   Link.(完全一致)   给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...

随机推荐

  1. Underscore.js 1.3.3 源码分析收藏

    Underscore是一个提供许多函数编程功能的库,里面包含了你期待(在Prototype.js和Ruby中)的许多功能.但是没有扩展任何内置的Javascript对象,也就是说它没有扩展任何内置对象 ...

  2. warmup(HCTF 2018)

    为啥想写这道题的wp呢,因为这道题就是照着phpmyadmin 4.8.1 远程文件包含漏洞(CVE-2018-12613)复现出来的 题目 查看源码很容易找到source.php,直接访问 分析 题 ...

  3. JVM组成详解

    一.JVM 整体组成 JVM 整体组成可分为以下四个部分: 类加载器(ClassLoader) 运行时数据区(Runtime Data Area) 执行引擎(Execution Engine) 本地库 ...

  4. unity3d微软语音识别httppost失败。安全验证问题

    using System; using System.Collections; using System.Collections.Generic; using System.IO; using Sys ...

  5. Cesium中级教程8 - Introduction to Particle Systems 粒子系统入门

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ What is a particle system? 什么是粒子 ...

  6. 第02讲:Flink 入门程序 WordCount 和 SQL 实现

    我们右键运行时相当于在本地启动了一个单机版本.生产中都是集群环境,并且是高可用的,生产上提交任务需要用到flink run 命令,指定必要的参数. 本课时我们主要介绍 Flink 的入门程序以及 SQ ...

  7. Python小练习-购物商城(一部分代码,基于python2.7.5)

    新手写作,用来练习与提高python编写.思考能力,有错误的地方请指正,谢谢! 第一次写博客,课题是一位大神的博客,本着练习的目的,就自己重写了一遍,有很多不足的地方,希望借博客记录下自己的成长:  ...

  8. 集合框架-工具类-Collections-逆序替换

    1 package cn.itcast.p2.toolclass.collections.demo; 2 3 import java.util.ArrayList; 4 import java.uti ...

  9. 集合框架-Map集合特点及常用方法

    1 package cn.itcast.p6.map.demo; 2 3 import java.util.HashMap; 4 import java.util.Iterator; 5 import ...

  10. ping: Network is unreachable

    问题 [root@web-1 yum.repos.d]# ping baidu.com ping: unknown host baidu.com [root@web-1 yum.repos.d]# p ...