\(\mathcal{Description}\)

  Link.

  有 \(n\) 物品,第 \(i\) 中有 \(a_i\) ,单价为 \(b_i\)。共 \(q\) 次询问,每次查询用不超过 \(c\) 的钱购买种类在 \([l,r]\) 之中的物品,有多少种方案。强制在线;答案对 \(998244353\) 取模。

  \(n\le10^4\),\(q\le5\times10^4\),\(c\le10^3\)。

\(\mathcal{Solution}\)

  快速回答区间询问,最基础但容易被忽略的处理方式——前缀和差。

  考虑第 \(i\) 中物品的 OGF,显然有

\[G_i(x)=\frac{1-x^{(a_i+1)b_i}}{1-x^{b_i}}.
\]

欲求答案 \(\sum_{k\le c}[x^k]\prod_{i=l}^rG_i(x)\),转化为前缀积乘上前缀积的逆,预处理出

\[S_i(x)=\prod_{j=1}^iG_j(x),\\
S^{-1}_i(x)=\prod_{j=1}^iG_j^{-1}(x).
\]

顺带发现 \(G_j(x)\) 和 \(G_j^{-1}\) 长相完全一样,所以这俩也就是换换加减号的事儿。精巧递推一发可以做到 \(\mathcal O(nc)\) 预处理,查询复杂度即求前缀系数和,预先将 \(S_i(x)\) 或 \(S_i^{-1}(x)\) 的系数做前缀和后即为求卷积的某项系数,暴力模拟,则有单次查询复杂度 \(\mathcal O(c)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <cstring> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) inline int rint() {
int x = 0, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() );
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x;
} inline void wint( const int x ) {
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} const int MAXN = 1e4, MAXC = 1e3, MOD = 998244353;
int n, q, a[MAXN + 5], b[MAXN + 5];
int f[MAXN + 5][MAXC + 5], g[MAXN + 5][MAXC + 5]; inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mul( const long long a, const int b ) { return int( a * b % MOD ); } inline void init() {
f[0][0] = g[0][0] = 1;
rep ( i, 1, n ) {
memcpy( f[i], f[i - 1], sizeof f[i] );
memcpy( g[i], g[i - 1], sizeof g[i] );
int t;
rep ( j, t = b[i], MAXC ) addeq( f[i][j], f[i][j - t] );
per ( j, MAXC, t = ( a[i] + 1 ) * b[i] ) subeq( f[i][j], f[i][j - t] );
rep ( j, t = ( a[i] + 1 ) * b[i], MAXC ) addeq( g[i][j], g[i][j - t] );
per ( j, MAXC, t = b[i] ) subeq( g[i][j], g[i][j - t] );
}
rep ( i, 0, n ) rep ( j, 1, MAXC ) addeq( g[i][j], g[i][j - 1] );
} int main() {
freopen( "shop.in", "r", stdin );
freopen( "shop.out", "w", stdout ); n = rint(), q = rint();
rep ( i, 1, n ) a[i] = rint(), b[i] = rint(); init(); for ( int ans = 0, l, r, c; q--; ) {
l = ( rint() + ans ) % n + 1, r = ( rint() + ans ) % n + 1, c = rint();
if ( l > r ) l ^= r ^= l ^= r;
ans = 0;
rep ( i, 0, c ) addeq( ans, mul( f[r][i], g[l - 1][c - i] ) );
wint( ans ), putchar( '\n' );
}
return 0;
}

Solution -「多校联训」小卖部的更多相关文章

  1. Solution -「多校联训」排水系统

    \(\mathcal{Description}\)   Link.   在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...

  2. Solution -「多校联训」I Love Random

    \(\mathcal{Description}\)   给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...

  3. Solution -「多校联训」签到题

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...

  4. Solution -「多校联训」朝鲜时蔬

    \(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...

  5. Solution -「多校联训」消失的运算符

    \(\mathcal{Description}\)   Link.   给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...

  6. Solution -「多校联训」假人

    \(\mathcal{Description}\)   Link.   一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...

  7. Solution -「多校联训」古老的序列问题

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...

  8. Solution -「多校联训」Sample

    \(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...

  9. Solution -「多校联训」光影交错

    \(\mathcal{Description}\)   Link.   一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 ...

随机推荐

  1. sqoop的使用之import导入到HDFS

    原文链接: https://www.toutiao.com/i6772128429614563843/ 首先我们已经安装好sqoop了,如果没有安装好参考文档<快速搭建CDH-Hadoop-Hi ...

  2. layui父表单获取子表单的值完成修改操作

    最近在做项目时,学着用layui开发后台管理系统. 但在做编辑表单时遇到了一个坑. 点击编辑时会出现一个弹窗. 我们需要从父表单传值给子表单.content是传值给子表单 layer.open({ t ...

  3. python驱动SAP完成数据导出(一)

    写在前面 我们使用Python驱动SAP时,经常会需要导出一些SAP报表数据至本地Excel文件.这个看似简单的问题背后,其实暗藏玄机,今天小爬就带各位同学好好捋捋. 以事务代码FB03(凭证清单)为 ...

  4. day 21 C语

    (1).有以下程序: 执行后的输出结果是[A] (A).256,1 (B).1,256 (C).255,1 (D).256,0 (2).以下选项中与(!a==0)的逻辑值不等价的表达式是[B] (A) ...

  5. 《剑指offer》面试题30. 包含min函数的栈

    问题描述 定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min.push 及 pop 的时间复杂度都是 O(1).   示例: MinStack minSt ...

  6. Rust 实现一个简单的区块链

    一.背景 近期用 Rust 实现了 Jeiwan/blockchain_go,与原项目相比没有加入新的功能,只是换了一个编程语言实现了一遍,源码放在 Github 上. 开发这个项目,花费了好几个周末 ...

  7. 【记录一个问题】运算迁移到gpu后的计时问题

    我把部分计算迁移到GPU后,发现以帧率计算的程序,帧率下降:但是看各个函数的时间,又比之前减少了. 很奇怪,既然各个函数的时间减少,为什么帧率反而下降? 原来计算帧率使用了 gettimeofday( ...

  8. 【记录一个问题】cuda核函数可能存在栈溢出,导致main()函数退出后程序卡死30秒CUDA

    调试一个CUDA核函数过程中发现一个奇怪的问题:调用某个核函数,程序耗时33秒,并且主要时间是main()函数结束后的33秒:而注释掉此核函数,程序执行不到1秒. 由此可见,可能是某种栈溢出,导致了程 ...

  9. javascript 获取<td>标签内的值。

    当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model). HTML DOM 模型被构造为对象的树. 通过可编程的对象模型,JavaScript 获得了足够的能力来 ...

  10. java继承子类实例化过程(细节解释)

    1 package face_08; 2 class Fu{ 3 Fu(){ 4 super(); 5 show(); 6 return; 7 } 8 void show() { 9 System.o ...