Solution -「多校联训」小卖部
\(\mathcal{Description}\)
Link.
有 \(n\) 种物品,第 \(i\) 中有 \(a_i\) 个,单价为 \(b_i\)。共 \(q\) 次询问,每次查询用不超过 \(c\) 的钱购买种类在 \([l,r]\) 之中的物品,有多少种方案。强制在线;答案对 \(998244353\) 取模。
\(n\le10^4\),\(q\le5\times10^4\),\(c\le10^3\)。
\(\mathcal{Solution}\)
快速回答区间询问,最基础但容易被忽略的处理方式——前缀和差。
考虑第 \(i\) 中物品的 OGF,显然有
\]
欲求答案 \(\sum_{k\le c}[x^k]\prod_{i=l}^rG_i(x)\),转化为前缀积乘上前缀积的逆,预处理出
S^{-1}_i(x)=\prod_{j=1}^iG_j^{-1}(x).
\]
顺带发现 \(G_j(x)\) 和 \(G_j^{-1}\) 长相完全一样,所以这俩也就是换换加减号的事儿。精巧递推一发可以做到 \(\mathcal O(nc)\) 预处理,查询复杂度即求前缀系数和,预先将 \(S_i(x)\) 或 \(S_i^{-1}(x)\) 的系数做前缀和后即为求卷积的某项系数,暴力模拟,则有单次查询复杂度 \(\mathcal O(c)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <cstring>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
inline int rint() {
int x = 0, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() );
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void wint( const int x ) {
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
}
const int MAXN = 1e4, MAXC = 1e3, MOD = 998244353;
int n, q, a[MAXN + 5], b[MAXN + 5];
int f[MAXN + 5][MAXC + 5], g[MAXN + 5][MAXC + 5];
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mul( const long long a, const int b ) { return int( a * b % MOD ); }
inline void init() {
f[0][0] = g[0][0] = 1;
rep ( i, 1, n ) {
memcpy( f[i], f[i - 1], sizeof f[i] );
memcpy( g[i], g[i - 1], sizeof g[i] );
int t;
rep ( j, t = b[i], MAXC ) addeq( f[i][j], f[i][j - t] );
per ( j, MAXC, t = ( a[i] + 1 ) * b[i] ) subeq( f[i][j], f[i][j - t] );
rep ( j, t = ( a[i] + 1 ) * b[i], MAXC ) addeq( g[i][j], g[i][j - t] );
per ( j, MAXC, t = b[i] ) subeq( g[i][j], g[i][j - t] );
}
rep ( i, 0, n ) rep ( j, 1, MAXC ) addeq( g[i][j], g[i][j - 1] );
}
int main() {
freopen( "shop.in", "r", stdin );
freopen( "shop.out", "w", stdout );
n = rint(), q = rint();
rep ( i, 1, n ) a[i] = rint(), b[i] = rint();
init();
for ( int ans = 0, l, r, c; q--; ) {
l = ( rint() + ans ) % n + 1, r = ( rint() + ans ) % n + 1, c = rint();
if ( l > r ) l ^= r ^= l ^= r;
ans = 0;
rep ( i, 0, c ) addeq( ans, mul( f[r][i], g[l - 1][c - i] ) );
wint( ans ), putchar( '\n' );
}
return 0;
}
Solution -「多校联训」小卖部的更多相关文章
- Solution -「多校联训」排水系统
\(\mathcal{Description}\) Link. 在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...
- Solution -「多校联训」I Love Random
\(\mathcal{Description}\) 给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...
- Solution -「多校联训」签到题
\(\mathcal{Description}\) Link. 给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...
- Solution -「多校联训」朝鲜时蔬
\(\mathcal{Description}\) Link. 破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面. 对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...
- Solution -「多校联训」消失的运算符
\(\mathcal{Description}\) Link. 给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...
- Solution -「多校联训」假人
\(\mathcal{Description}\) Link. 一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...
- Solution -「多校联训」古老的序列问题
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...
- Solution -「多校联训」Sample
\(\mathcal{Description}\) Link (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...
- Solution -「多校联训」光影交错
\(\mathcal{Description}\) Link. 一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 ...
随机推荐
- 官方文档粗读 - Tutorial
参考: https://www.jianshu.com/p/0d234e14b5d3 1.Connecting 我们通过 create_engine() 来链接数据库,假设我们我们采用SQLite. ...
- Nginx日志通过Flume导入到HDFS中
关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新) flume上传到hdfs: 当我们的数据量比较大时,比如每天的日志文件达到5G以上 使用ha ...
- Hive的导入导出和常用过滤语句的学习
原文: https://www.toutiao.com/i6769166601871688196/?group_id=6769166601871688196 数据的导入 load data [loca ...
- python多环境管理一(venv与virtualenv)
一.背景 我们经常会遇见这样的场景: 1.各个项目使用的python版本不相同 由于Python的解释器版本众多,各版本之间差异非常大.特别是python2和python3,互不兼容. 有些项目可能用 ...
- [解决] No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android
前端时间项目组让我改一个比较老的项目,说是用Android Studio2.3版本可以直接运行,于是我下载了一个2.3.2的,结果出现了一堆问题,总结下: 首先导入项目后build完直接报出:No t ...
- java 8 - java 17 升级指北
2014年发布的java SE 8和2017年发布的java EE 8,至今还是使用最广泛的java版本,大部分java开发者对于java 8之后的升级总是敬而远之,这跟java 9以后的破坏性升级和 ...
- 智能集成接口:I3 ISA-95 的应用
介绍 多年来,使用基于制造运营管理 (MOM) 的应用程序的制造 IT 顾问试图说服制造商这些类型的应用的高价值.实时 MOM 解决方案是唯一一组能够精确优化工厂日常运营的 IT 应用程序,可为其可用 ...
- CODING 携手 Thoughtworks 助力老百姓大药房打造”自治、自决、自动”的敏捷文化
老百姓大药房是中国具有影响力的药品零售连锁企业,中国药品零售企业综合竞争力百强冠军.中国服务业 500 强企业.湖南省百强企业. 自 2001 年创立以来,现已成功开发了湖南. 陕西.浙江.江苏等 * ...
- k个鸡蛋从N楼层摔,如果确定刚好摔碎的那个楼层,最坏情况下最少要试验x次?
题目 k个鸡蛋从N楼层摔,如果确定刚好摔碎的那个楼层,最坏情况下最少要试验x次? 换个说法: k个鸡蛋试验x次最多可以检测N层楼.计算出N? 逆向思维和数学公式解. 分析 定义N(k,x) 如果第k个 ...
- 《剑指offer》面试题46. 把数字翻译成字符串
问题描述 给定一个数字,我们按照如下规则把它翻译为字符串:0 翻译成 "a" ,1 翻译成 "b",--,11 翻译成 "l",--,25 ...