AT3527 [ARC082D] Sandglass
解法一
直接考虑在初始为 \(a\) 的情况下时刻 \(t\) 时 \(A\) 中剩余的沙子是行不通的,不妨反过来考虑在时刻 \(t\) 每个初始值 \(a\) 的答案,令其为 \(f_t(a)\)。
因为若一开始 \(A\) 中沙子多之后的任意时刻 \(A\) 中的沙子也会更多,那么我们可以发现:\(f_t(0) \le f_t(1) \le \cdots \le f_t(X)\)。
单独考虑我们现在要求的 \(f_t(a)\),若 \(f_t(a)\) 的函数图像在某一点和 \(f_t(0) / f_t(X)\) 相交那么其接下来的函数图像必然会与 \(f_t(0) / f_t(X)\) 重合。
如果没有相交的话,\(f_t(a)\) 也必然不会与 \(y = X, y = 0\) 相交,此时就不会出现与 \(0\) 取 \(\max\) 或与 \(X\) 取 \(\min\) 的情况了,此时的函数值就可以快速算出了。
于是难点在于如何判断 \(f_t(a)\) 是否与 \(f_t(0), f_t(X)\) 相交。
首先我们先算出如果不相交的函数值 \(g_t(a)\),直觉告诉我们若 \(f_t(0) < g_t(a) < f_t(X)\) 那么没有相交否则越过哪条线就会与哪条线相交。
因为相交处必然在 \(y = 0, y = X\) 上,那么一旦相交就会比 \(f_t(0), f_t(X)\) 慢半拍以至于后面肯定在区间外。
那么我们只需计算出每个查询时刻 \(f_t(0), f_t(X)\) 以及不算相交的值即可,复杂度 \(\mathcal{O(n + m)}\)。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 1e5 + 5;
int n, q, t, a, k, X, P, buf, f[2], r[N];
int F(int x, int buf) { return max(0ll, min(X, x + buf));}
signed main () {
cin >> X >> n;
rep(i, 1, n) cin >> r[i];
cin >> q, P = 1;
f[0] = 0, f[1] = X;
while (q--) {
cin >> t >> a;
for (; r[P] <= t && P <= n; ++P) {
buf = (P & 1) ? -(r[P] - r[P - 1]) : (r[P] - r[P - 1]);
k += buf;
f[0] = F(f[0], buf), f[1] = F(f[1], buf);
}
buf = (P & 1) ? r[P - 1] - t : t - r[P - 1];
printf("%lld\n", max(F(f[0], buf), min(F(f[1], buf), a + k + buf)));
}
return 0;
}
解法二
首先需要解法一中相交及之前的分析。
接下来你会发现,函数图像一定先是一段与 \(f_t(0)\) 相同,然后是一段斜率为 \(1\) 的线段,接着一段与 \(f_t(X)\) 相同。
并且这一段与 \(f_t(0) / f_t(X)\) 相同的点对于接下来的每个时刻依然会相同,于是我们只需考虑维护出不同的两个拐点以及 \(f_t(0), f_t(X)\) 的函数值即可。
第一步正难则反的思考是十分重要的。
其次,每当我们有了一个新的想法或转化以后一定要将这个想法或转化下的性质挖掘清楚,观察显得尤为重要。
AT3527 [ARC082D] Sandglass的更多相关文章
- 2017国家集训队作业[arc082d]Sandglass
2017国家集训队作业[arc082d]Sandglass 题意: 有一个沙漏,初始时\(A\)瓶在上方,两个瓶子的最大容量都为\(X\)克,沙子流动的速度为\(1g\)每单位时间.给出\(K\) ...
- 【ARC082D】Sandglass
Description 题目链接 Description 好题.题意是维护一个初始值,交替加减一段时间,有上界\(m\)和下界0(不能超过这两条界限),问对于某一种初始值,在某一个时刻时该值为 ...
- Sandglass
题目描述 We have a sandglass consisting of two bulbs, bulb A and bulb B. These bulbs contain some amount ...
- 【AtCoder】ARC082 F - Sandglass
[链接]F - Sandglass [题意]给定沙漏A和B,分别装着a和X-a的沙子,开始时A在上B在下,每秒漏1,漏完不再漏.给定n,有n个时刻ai沙漏倒转.给定m个询问,每次询问给定初值a和时刻t ...
- [arc082F]Sandglass
Description 传送门 Solution 这题是真的666啊... 以下是本题最关键最关键的结论:如果ai<=aj,则在某个时间t,前者的A中沙子克数(记为t(ai))一定大于等于t(a ...
- [arc082f]Sandglass 递推
Description 有一个沙漏由两个上下相通玻璃球A和B构成,这两个玻璃球都含有一定量的沙子,我们暂且假定AB中位于上方的玻璃球的为U,下方的玻璃球为L,则除非U中没有沙子,否则每秒钟都会有1克沙 ...
- 【推导】【模拟】AtCoder Regular Contest 082 F - Sandglass
题意:有个沙漏,一开始bulb A在上,bulb B在下,A内有a数量的沙子,每一秒会向下掉落1.然后在K个时间点ri,会将沙漏倒置.然后又有m个询问,每次给a一个赋值ai,然后询问你在ti时刻,bu ...
- Arc082_F Sandglass
Description有一个沙漏由两个上下相通玻璃球$A$和$B$构成,这两个玻璃球都含有一定量的沙子,我们暂且假定$A,B$中位于上方的玻璃球的为$U$,下方的玻璃球为$L$,则除非$U$中没有沙子 ...
- [ARC082F] Sandglass(线段树)
Description 有一个沙漏由两个上下相通玻璃球 \(A\) 和 \(B\) 构成,这两个玻璃球都含有一定量的沙子,我们暂且假定 \(AB\) 中位于上方的玻璃球的为 \(U\),下方的玻璃球为 ...
随机推荐
- 高并发 IO 模型
五种IO模型包括:阻塞IO.非阻塞IO.IO多路复用.信号驱动IO.异步IO. 阻塞IO模型: 不管是网络IO还是磁盘IO,对于读操作而言,都是等到网络的某个数据分组到达后/数据准备好后,将数据拷贝到 ...
- 第四十四个知识点:在ECC密码学方案中,描述一些基本的防御方法
第四十四个知识点:在ECC密码学方案中,描述一些基本的防御方法 原文地址:http://bristolcrypto.blogspot.com/2015/08/52-things-number-44-d ...
- Order Statistic
目录 The Order Statistic 引理1 的一些基本性质 顺序统计量的分布 顺序统计量的条件分布 特殊分布的特殊性质 Order Statistic The Order Statistic ...
- Entropy, relative entropy and mutual information
目录 Entropy Joint Entropy Conditional Entropy Chain rule Mutual Information Relative Entropy Chain Ru ...
- Java EE数据持久化框架作业目录(作业笔记)
第1章 MyBatis入门>>> 1.1.4 在Eclipse中搭建MyBatis基本开发环境 1.2.5 使用MyBatis查询所有职员信息 1.3.3 获取id值为1的角色信息. ...
- 《手把手教你》系列技巧篇(五十三)-java+ selenium自动化测试-上传文件-上篇(详细教程)
1.简介 在实际工作中,我们进行web自动化的时候,文件上传是很常见的操作,例如上传用户头像,上传身份证信息等.所以宏哥打算按上传文件的分类对其进行一下讲解和分享. 2.为什么selenium没有提供 ...
- JS 数组的基本使用和案例
知识点汇总: 数组:就是一组数据的集合,存储在单个变量的方式 自变量创建数组 var 数组名字 = ['a','b'] // []里面的是数据的元素,可为任意字符类型 利用new创建数组 var 数组 ...
- UI自动化,通过Xpath结合父类、同级元素,查找到唯一的元素定位
UI自动化,通过Xpath定位的总结 当页面展示的内容的html布局格式一样,只能第几个控件的绝对定位来区分时,如果后面有变更控件的顺序,就会导致找不到这个元素,维护成本较高,可以尝试用其他的方式,比 ...
- unittest_TestSuite测试套件(2)
在前面一章中演示了unittest如何执行一个简单的测试,但有两个问题: 我们知道测试用例的执行顺序是根据测试用例名称顺序执行的,在不改变用例名称的情况下,我们怎么来控制用例执行的顺序呢? 一个测试文 ...
- lombok不支持enum类型
今天在使用枚举时想着少写getter方法和构造方法,结果加上注解后说是只支持class类型 来自为知笔记(Wiz)