AT3527 [ARC082D] Sandglass
解法一
直接考虑在初始为 \(a\) 的情况下时刻 \(t\) 时 \(A\) 中剩余的沙子是行不通的,不妨反过来考虑在时刻 \(t\) 每个初始值 \(a\) 的答案,令其为 \(f_t(a)\)。
因为若一开始 \(A\) 中沙子多之后的任意时刻 \(A\) 中的沙子也会更多,那么我们可以发现:\(f_t(0) \le f_t(1) \le \cdots \le f_t(X)\)。
单独考虑我们现在要求的 \(f_t(a)\),若 \(f_t(a)\) 的函数图像在某一点和 \(f_t(0) / f_t(X)\) 相交那么其接下来的函数图像必然会与 \(f_t(0) / f_t(X)\) 重合。
如果没有相交的话,\(f_t(a)\) 也必然不会与 \(y = X, y = 0\) 相交,此时就不会出现与 \(0\) 取 \(\max\) 或与 \(X\) 取 \(\min\) 的情况了,此时的函数值就可以快速算出了。
于是难点在于如何判断 \(f_t(a)\) 是否与 \(f_t(0), f_t(X)\) 相交。
首先我们先算出如果不相交的函数值 \(g_t(a)\),直觉告诉我们若 \(f_t(0) < g_t(a) < f_t(X)\) 那么没有相交否则越过哪条线就会与哪条线相交。
因为相交处必然在 \(y = 0, y = X\) 上,那么一旦相交就会比 \(f_t(0), f_t(X)\) 慢半拍以至于后面肯定在区间外。
那么我们只需计算出每个查询时刻 \(f_t(0), f_t(X)\) 以及不算相交的值即可,复杂度 \(\mathcal{O(n + m)}\)。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 1e5 + 5;
int n, q, t, a, k, X, P, buf, f[2], r[N];
int F(int x, int buf) { return max(0ll, min(X, x + buf));}
signed main () {
cin >> X >> n;
rep(i, 1, n) cin >> r[i];
cin >> q, P = 1;
f[0] = 0, f[1] = X;
while (q--) {
cin >> t >> a;
for (; r[P] <= t && P <= n; ++P) {
buf = (P & 1) ? -(r[P] - r[P - 1]) : (r[P] - r[P - 1]);
k += buf;
f[0] = F(f[0], buf), f[1] = F(f[1], buf);
}
buf = (P & 1) ? r[P - 1] - t : t - r[P - 1];
printf("%lld\n", max(F(f[0], buf), min(F(f[1], buf), a + k + buf)));
}
return 0;
}
解法二
首先需要解法一中相交及之前的分析。
接下来你会发现,函数图像一定先是一段与 \(f_t(0)\) 相同,然后是一段斜率为 \(1\) 的线段,接着一段与 \(f_t(X)\) 相同。
并且这一段与 \(f_t(0) / f_t(X)\) 相同的点对于接下来的每个时刻依然会相同,于是我们只需考虑维护出不同的两个拐点以及 \(f_t(0), f_t(X)\) 的函数值即可。
第一步正难则反的思考是十分重要的。
其次,每当我们有了一个新的想法或转化以后一定要将这个想法或转化下的性质挖掘清楚,观察显得尤为重要。
AT3527 [ARC082D] Sandglass的更多相关文章
- 2017国家集训队作业[arc082d]Sandglass
2017国家集训队作业[arc082d]Sandglass 题意: 有一个沙漏,初始时\(A\)瓶在上方,两个瓶子的最大容量都为\(X\)克,沙子流动的速度为\(1g\)每单位时间.给出\(K\) ...
- 【ARC082D】Sandglass
Description 题目链接 Description 好题.题意是维护一个初始值,交替加减一段时间,有上界\(m\)和下界0(不能超过这两条界限),问对于某一种初始值,在某一个时刻时该值为 ...
- Sandglass
题目描述 We have a sandglass consisting of two bulbs, bulb A and bulb B. These bulbs contain some amount ...
- 【AtCoder】ARC082 F - Sandglass
[链接]F - Sandglass [题意]给定沙漏A和B,分别装着a和X-a的沙子,开始时A在上B在下,每秒漏1,漏完不再漏.给定n,有n个时刻ai沙漏倒转.给定m个询问,每次询问给定初值a和时刻t ...
- [arc082F]Sandglass
Description 传送门 Solution 这题是真的666啊... 以下是本题最关键最关键的结论:如果ai<=aj,则在某个时间t,前者的A中沙子克数(记为t(ai))一定大于等于t(a ...
- [arc082f]Sandglass 递推
Description 有一个沙漏由两个上下相通玻璃球A和B构成,这两个玻璃球都含有一定量的沙子,我们暂且假定AB中位于上方的玻璃球的为U,下方的玻璃球为L,则除非U中没有沙子,否则每秒钟都会有1克沙 ...
- 【推导】【模拟】AtCoder Regular Contest 082 F - Sandglass
题意:有个沙漏,一开始bulb A在上,bulb B在下,A内有a数量的沙子,每一秒会向下掉落1.然后在K个时间点ri,会将沙漏倒置.然后又有m个询问,每次给a一个赋值ai,然后询问你在ti时刻,bu ...
- Arc082_F Sandglass
Description有一个沙漏由两个上下相通玻璃球$A$和$B$构成,这两个玻璃球都含有一定量的沙子,我们暂且假定$A,B$中位于上方的玻璃球的为$U$,下方的玻璃球为$L$,则除非$U$中没有沙子 ...
- [ARC082F] Sandglass(线段树)
Description 有一个沙漏由两个上下相通玻璃球 \(A\) 和 \(B\) 构成,这两个玻璃球都含有一定量的沙子,我们暂且假定 \(AB\) 中位于上方的玻璃球的为 \(U\),下方的玻璃球为 ...
随机推荐
- 使用AVPlayer自定义支持全屏的播放器(五)—Swift重构版本
前言 很早之前开源了一个简单的视频播放器,由于年久失修,效果惨目忍睹,最近特意花时间对其进行了深度重构.旧版本后期不再维护,新版本使用Swift实现,后续会增加更多功能.不想看文字的请自行下载代码-- ...
- Spring事务的基本原理
Spring事务的本质其实就是数据库对事务的支持,没有数据库的事务支持,spring是无法提供事务功能的.. 对于纯JDBC操作数据库,想要用到事务,可以按照以下步骤进行: 获取连接 Connecti ...
- vue项目在ie浏览器下报语法错误
错误如下: 1.用vue 写的项目最多可以兼容到IE9 及以上版本 2.使用babel-polyfill做兼容npm install babel-polyfill --save-dev 安装之后如果发 ...
- Capstone CS5268 Type-C转HDMI+VGA带PD快充+USB3.1扩展坞方案
CS5268是一种高度集成的单芯片,适用于多个细分市场和显示应用,如拓展坞.扩展底座等. 2.CS5268参数说明 总则 USB Type-C规范1.2 HDMI规范v2.0b兼容发射机,数据速率高达 ...
- Hexo博客部署到腾讯云服务器全过程(Nginx,证书,HTTPS),你要的这里都有
背景 说来也惭愧,博客已经搭建很久了,一直免费的部署在 Coding 和 Github Pages 上,前者迁移到腾讯云 Serverless,导致原有的配置始终有问题,没时间仔细研究,刚好腾讯服务器 ...
- python call函数
call()函数本质上是将一个类的实例转换成一个函数,例如下列示例: class Sample: def __init__(self, x, y): self.x = x self.y = y def ...
- Nginx 加载conf.d (内文件***.conf)
include /usr/local/nginx/conf/conf.d/*.conf;
- 华为云 Kubernetes 管理员实训 四 课后作业
练习一 创建一个Service和一个Pod作为其后端.通过kubectl describe获得该Service和对应Endpoints的信息. Service的名称为<hwcka-004-1-s ...
- Linux内核模块学习
注:本文是<Linux设备驱动开发详解:基于最新的Linux 4.0内核 by 宋宝华 >一书学习的笔记,大部分内容为书籍中的内容. 书籍可直接在微信读书中查看:Linux设备驱动开发详解 ...
- JVM调优工具锦囊
Arthas线上 分析诊断调优工具 以前我们要排查线上问题,通常使用的是jdk自带的调优工具和命令.最常见的就是dump线上日志,然后下载到本地,导入到jvisualvm工具中.这样操作有诸多不变,现 ...