大致题意:

给你9堆扑克牌,每堆牌有4张,大小从A~K。每次从9堆牌牌顶抽走两张大小相同的牌,且抽走每一对相同的牌的概率都相等。问可以全部抽完的概率。

分析:

这是一道概率dp题。剩余的牌数作为状态,有9堆,意味着要一个9维数组来存d[i1][i2][i3][i4][i5][i6][i7][i8][i9]表示这个状态的概率,0<=i<=4。

状态转移:

当前状态的概率等于抽走两张牌后所能达到的状态的概率和除以所能达到的状态数

边界d[0][0][0][0][0][0][0][0][0]=1

#include <bits/stdc++.h>
using namespace std; char s[15][10];
map<vector<int>,double> d; double dp(vector<int> cnt,int left)
{
if(left==0) return 1.0;
if(d.count(cnt)) return d[cnt];
d[cnt]=0;
int tmp=0;
double res = 0;
for(int i=1;i<=9;i++)
{
if(cnt[i]==0) continue;
for(int j=i+1;j<=9;j++)
{
if(cnt[j]==0) continue;
if(s[i][cnt[i]]==s[j][cnt[j]])
{
cnt[i]--;
cnt[j]--;
//debug(cnt);
res+=dp(cnt,left-2);
cnt[i]++;
cnt[j]++;
tmp++;
}
}
}
if(tmp>0) d[cnt]=res/tmp;
return d[cnt];
} int main()
{
// freopen("in.txt","r",stdin);
freopen("double.in","r",stdin);
freopen("double.out","w",stdout);
char ts[5];
for(int i=1;i<=9;i++)
{
for(int j=1;j<=4;j++)
{
scanf("%s",ts);
s[i][j]=ts[0];
}
}
vector<int> cnt(10,4);
d.clear();
printf("%.6f\n",dp(cnt,36));
return 0;
}

Gym 101334D 记忆化dp的更多相关文章

  1. Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)

    Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...

  2. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  3. cf835(预处理 + 记忆化dp)

    题目链接: http://codeforces.com/contest/835/problem/D 题意: 定义 k 度回文串为左半部分和右半部分为 k - 1 度的回文串 . 给出一个字符串 s, ...

  4. cf779D(记忆化dp)

    题目链接: http://codeforces.com/problemset/problem/799/D 题意: 给出两个矩阵边长 a, b, 和 w, h, 以及一个 c 数组, 可选择 c 数组中 ...

  5. Codeforces1107E Vasya and Binary String 记忆化dp

    Codeforces1107E 记忆化dp E. Vasya and Binary String Description: Vasya has a string \(s\) of length \(n ...

  6. POJ 1088 滑雪(简单的记忆化dp)

    题目 又一道可以称之为dp的题目,虽然看了别人的代码,但是我的代码写的还是很挫,,,,,, //看了题解做的简单的记忆化dp #include<stdio.h> #include<a ...

  7. POJ 1088 滑雪 记忆化DP

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K       Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度 ...

  8. BNU 25593 Prime Time 记忆化dp

    题目链接:点击打开链接 题意: 一个游戏由3个人轮流玩 每局游戏由当中一名玩家选择一个数字作为開始 目的:获得最小的得分 对于当前玩家 O .面对 u 这个数字 则他的操作有: 1. 计分 u +1 ...

  9. [luogu]P1514 引水入城[搜索][记忆化][DP]

    [luogu]P1514 引水入城 引水入城 题目描述在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个N 行M 列的矩形 ,如下图所示,其中每个格 ...

随机推荐

  1. Canal和Otter介绍和使用

    Canal Canal原理 原理相对比较简单: canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议 mysql master收 ...

  2. Linux 部署 iSCSI 客户端配置(Windows)

    Linux 部署 iSCSI 客户端配置(Windows) 客户端环境 Client :Windows 7 ip :192.168.121.138 一.首先查看客户端本地所有的磁盘 查看路径:邮件计算 ...

  3. Centos6.8安装mysql 步骤

    第1步.查看CentOS下是否已安装mysql 输入命令 :yum list installed | grep mysql 第2步.删除已安装mysql 输入命令:yum -y remove mysq ...

  4. python基础之python牛逼的设计模式

    七大设计原则: 1.单一职责原则[SINGLE RESPONSIBILITY PRINCIPLE]:一个类负责一项职责. 2.里氏替换原则[LISKOV SUBSTITUTION PRINCIPLE] ...

  5. Centos 7.4搭建es7.12.0+Skywalking7.8.5

    Skywalking整体架构图和分布式追踪系统原理:https://blog.csdn.net/weixin_39866487/article/details/111581322 软件包版本1.ela ...

  6. 【待写Java线程之线程终止 Interrupt 】

    参考:https://bbs.csdn.net/topics/280082639 interrupt()方法不会中断一个正在运行的线程.这一方法实际上完成的是,在线程受到阻塞时抛出一个中断信号,这样线 ...

  7. Django(38)mac安装redis

    安装redis 1.使用Homebrew安装Redis brew install redis 执行上述命令后出现以下内容,则成功安装 Download failed: https://mirrors. ...

  8. 使用 “恢复模式” 或 “DFU 模式” 来更新和恢复 iOS 固件

    请访问原文链接:https://sysin.org/article/apple-ios-dfu/,查看最新版.原创作品,转载请保留出处. 作者:gc(at)sysin.org,主页:www.sysin ...

  9. visudo

    修改sudo配置 sudo visudo 上面的意思是执行visudo这个命令, visudo其实就是用vi编辑器来编辑/etc/sudoers, 这个文件只能通过visudo来修改 或者在/etc/ ...

  10. Ryzen 4000'Vermeer' CPU和Radeon RX'Big Navi'图形卡

    Ryzen 4000'Vermeer' CPU和Radeon RX'Big Navi'图形卡 来自中国媒体的多篇报道表明,AMD都准备在2020年第四季度初推出其下一代Ryzen 4000'Zen 3 ...