AT1445 乱数生成 题解
Description
有一个机器会等概率从 \(1\) 到 \(n\) 的正整数中选出一个整数。显然地,这个机器运行 \(3\) 次后会得到 \(3\) 个整数。求这 \(3\) 个整数的中位数是 \(k\) 的概率。
数据范围:\(1\leqslant k\leqslant n\leqslant 10^6\)。
Solution
发现自己快到 CSP 了完全不会概率,于是随便在 AtCoder 上面找了个题玩玩。
首先我们发现,由于选取的整数个数为奇数,那么要想这 \(3\) 个数为 \(k\),选取的三个数中至少应该有一个数是 \(k\)。
我们不妨设所选的 \(3\) 个正整数为 \(a,b,c\),然后对 \(a,b,c\) 的取值情况进行分类讨论。以下设 \(p\) 为任意不等于 \(k\) 的正整数。
\(a=b=c=k\)。
显然,只有一种情况能够满足这个要求。\(a,b,c\) 中恰好有 \(2\) 个整数为 \(k\)。
显然,从其余的 \(n-1\) 个正整数中选出一个数都能够满足这类条件。然后考虑一般的情况,由于不同的排列有 \((k,k,p)\),\((k,p,k)\) 和 \((p,k,k)\) 三种,因此这类下一共有 \(3(n-1)=3n-3\) 种情况。\(a,b,c\) 中恰好有 \(1\) 个整数为 \(k\)。
另外一个数要么是在 \([1,k-1]\) 中(也就是有 \(k-1\) 种不同的取值情况),要么是在 \([k+1,n]\) 中(也就是有 \(n-k\) 种不同的取值情况)。又由于不同的排列一共有 \((k,p_1,p_2)\),\((k,p_2,p_1)\),\((p_1,k,p_2)\),\((p_2,k,p_1)\),\((p_1,p_2,k)\) 和 \((p_2,p_1,k)\) \(6\) 种,因此这类下一共有 \(6(k-1)(n-k)=6nk-6k^2-6n+6k\) 种情况。
把上面这三类整合在一起,因此一共有 \(6nk-6k^2-6n+6k+3n-3+1=6nk-6k^2-3n+6k-2\) 种情况。又因为所有不同的情况一共有 \(n^3\) 种。因此概率为:
\]
注意在代码实现中,由于允许的误差很小,答案需要用 long double
储存以保证精度。
代码就不贴了。
AT1445 乱数生成 题解的更多相关文章
- C#版 - Leetcode 633. 平方数之和 - 题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...
- [CQOI2014]数三角形 题解(组合数学+容斥)
[CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...
- [CQOI2014]数三角形 题解(找规律乱搞)
题面 其实这道题不用组合数!不用容斥! 只需要一个gcd和无脑找规律(滑稽 乍一看题目,如果单纯求合法三角形的话情况太多太复杂,我们可以从局部入手,最终扩展到整体. 首先考虑这样的情况: 类似地,我们 ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- CodeForces 509C Sums of Digits(贪心乱搞)题解
题意:a是严格递增数列,bi是ai每一位的和,告诉你b1~bn,问你怎样搞才能让an最小 思路:让ai刚好大于ai-1弄出来的an最小.所以直接模拟贪心,如果当前位和前一个数的当前位一样并且后面还能生 ...
- 洛谷【P2022 有趣的数】 题解
题目链接 https://www.luogu.org/problem/P2022 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10 ...
- Gym 101480I Ice Igloos(思维乱搞)题解
题意:给个最多500 * 500的平面,有半径最多不为1的n个圆,现在给你1e5条线段,问你每条线段和几个圆相交,时限10s 思路: 因为半径<1,那么我其实搜索的范围只要在线段附近就好了.x1 ...
- T66099 小xzy的数对 题解
T66099 小xzy的数对 题目背景 老师带同学参加表演,要求学生两两一组表演,但有些学生一起会发生冲突,现在老师想知道有多少组学生分到一起时不会发生冲突. 题目描述 学生发生冲突当且仅当他们身上的 ...
- Hdoj 2084.数塔 题解
Problem Description 在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的: 有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大 ...
随机推荐
- 【Tool】MySQL安装
MySQL安装 2019-11-07 14:30:32 by冲冲 本机 Windows7 64bit,MySQL是 mysql-8.0.18-winx64.zip. 1.官网下载 https:// ...
- P7045 「MCOI-03」金牌
考虑维护一个队列. 先插入\(a_1 = 0\) 依次往后考虑,如果和队列里相斥,则我们把队列一个和他捆绑起来. 如果队列空,则加入该颜色. 最后考虑往队列里插入改颜色. 总共为\(2 * (n - ...
- 【POJ3614 Sunscreen】【贪心】
题面: 有c头牛,需要的亮度在[min_ci,max_ci]中,有n种药,每种m瓶,可以使亮度变为v 问最多能满足多少头牛 算法 我们自然考虑贪心,我们首先对每头牛的min进行排序,然后对于每种药,将 ...
- OpenFOAM 中 c++ 基础
文件布置 在 OpenFOAM 中,所有代码都以注释段开头,使用有限体积的 CFD 类型文件都包括以下头文件 #include "fvCFD.H" 在此头文件种,仅包含类或函数的定 ...
- 关于基因GO分析的DAVID简单使用
利用DAVID简单的进行GO富集度分析(这里只做简单的分析,即看基因是否存在在GO的三个过程里面) 比如我们有一组要分析的基因:TRPV6 CXADR PROM1 GRAMD2 ...
- Docker Swarm的命令
初始化swarm manager并制定网卡地址docker swarm init --advertise-addr 192.168.10.117 强制删除集群docker swarm leave -- ...
- 『学了就忘』Linux文件系统管理 — 66、通过图形界面进行LVM分区
目录 1.选择自定义分区 2.分配boot分区 3.创建LVM物理卷 4.生成卷组 5.创建逻辑卷 6.格式化安装 我们先用新安装Linux系统时的图形化界面,来演示一下LVM逻辑卷如何进行分区. 提 ...
- Erda 系列 Meetup「成都站」携手SOFAStack 和你聊聊云原生基础设施建设那点事儿
技术控快上车啦秋天的第一场活动一起来收获技术干货吧! 主题: 云原生基础设施建设的现在及未来时间: 2021 年 9 月 11 日 (周六) 13:30-17:00活动地点: 四川省成都市蚂蚁 C 空 ...
- day11 系统安全
day11 系统安全 复习总结 文件 1.创建 格式:touch [路径] [root@localhost ~]# touch 1.txt # 当前路径创建 [root@localhost ~]# t ...
- 安全相关,xss
XSS XSS,即 Cross Site Script,中译是跨站脚本攻击:其原本缩写是 CSS,但为了和层叠样式表(Cascading Style Sheet)有所区分,因而在安全领域叫做 XSS. ...